
Authentication and Authorization

Basic Concepts

Authenticate & Authorize

 Authentication - validate the identity of a "user", agent,
or process

 Authorization - specifying rights to access a resource

Authentication is responsible for identifying who the user is.

Authorization is responsible for deciding what the user has
permission to do.

Other Aspects of Security

 Access Control - controls access to resources

 Data Integrity - prevent data from being modified or
corrupted, and prove that data hasn't been modified

 Confidentiality & Privacy - privacy is about people,
confidentiality is about data

 Non-repudiation - prove that user has made a request

• "repudiate" means to deny having done something

 Auditing - make a tamper-resistant record of security
related events

Authentication Methods
Authentication methods for humans:

1. Username & password

2. Username & one-time password (TOTP, codes, SMS)

3. Biometrics - fingerprint, facial recognition, iris scan

4. Trusted 3rd Party - OAuth and OpenID
"Login with Google" or "Login with Facebook"

5. Public-Private Keys

6. Passkeys

7. SQRL - similar to Passkeys (maybe better), by Steve Gibson

Mantra of Authentication

Use at least 2 of these...

Something you

- a username and password

Something you

- key card, registered mobile phone

Something you

- finger print, face, iris pattern

Username & Password

The oldest and one of the worst authentication methods.

Two page designKU

Username & Password

Passwords are not secure (obviously)

 can be stolen

 can be guessed or "brute forced"

 vulnerable to man-in-the-middle & replay attack

 people reuse passwords or use weak
passwords

Exercise: Have You Been Pwned?

Has your email address (and data) been stolen?

 https://haveibeenpwned.com/

Has your password been seen in a data breach?

 https://haveibeenpwned.com/Passwords

Key Observation about Passwords

 password is not using the computational ability of
the user's device. It's just a fixed string.

 with just a little computation ability we can create
a much more secure protocols
(like challenge - response)

Public-Private Key Algorithms

Public-private key pairs: Uses RSA (large prime numbers)
or Elliptic Curves (Ecliptic Curve Cryptography)

Private key:
p(m)

Public key:
P(m)

m = a message to send

p(m) and P(m) are inverse:

 P(p(m)) --> m

 p(P(m)) --> m

PKI = public key infrastructure

Public-Private Auth Example

1. You connect to a server and give your username.

2. Server looks up your public key (P) and chooses a
random message: m1

3. Server encrypts m1 with your public key:
challenge = P(m1)

4. Server sends challenge to you and says:
"if this is really who you claim to be, then
decrypt this challenge and send it back."

5. You decrypt the challenge: m2 = p(challenge)

5. You encrypt and return a response = p(m2 + 1)

6. Server checks response: P(response) == m1 + 1 ??

OAuth & OpenID

Use a 3rd party to validate the user's identity

OAuth providers

OAuth 2.0
You choose "Google".

Shopee redirects you to Google (may open a pop-up):

- tells Shopee who you are (grant access to your name &
email),
and proves that you have authenticated yourself to
Google.

Google.com

"shopee.co.th wants access
to your name and email"

Agree Cancel

After You Approve...
You are redirected back to Shopee (the client).

What happened?

- Google gave your browser an "authorization code", &
redirected the browser to Shopee "callback address"

- Shopee used the "authorization code" to get an "access
token" to access your resources

- Shopee uses Google API and the "access token" to get
your name and email address.

OAuth is for Authorization
OAuth is really about granting access to resources.

But, as a side effect, you confirm your identity.

Google.com

"shopee.co.th wants access
to your name and email"

Agree Cancel

What Happened?

When you click "Login with Google",
what happens behind the scene?

details in OAuth presentation

Role Based Authorization

Permissions are based on the roles a user possesses.

A user may have many roles.

Example: “joe” has roles “voter” and “administrator”

PrincipalSubject
(user)

Role
identifies

1..* *

has

Permissions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 18

