

The Make utility

software build tool

What Make does

 Automate building of software, even very complex
source trees

 Perform tasks using rules written in a Makefile

 Only does what is needed:
only update missing or out-of-date outputs ("targets")

 Makefile: Target, Dependencies & Actions

game: Game.o Board.o

 g++ -o game Game.o Board.o

Game.o: Game.cpp Board.h

 g++ -c Game.cpp

Board.o: Board.cpp Board.h

 g++ -c Board.cpp

A Rule

Target

Dependencies: what target depends on

Action: how to build the target

Running make

cmd> make game

g++ -c Game.cpp (creates Game.o)

g++ -c Board.cpp (creates Board.o)

g++ -o game Game.o Board.o

If you run make again, everything is up to date, so nothing
needs to be done:

cmd> make game

Up to date

What if Board class changes?

cmd> touch Board.cpp

("touch" command updates modification time)

cmd> make

g++ -c Board.cpp (recreates Board.o)

g++ -o game Game.o Board.o

Notice that make did not compile Game.cpp

game (exe)

Board.oGame.o

Board.h Board.cppGame.cpp

The rules define a graph

Makefile rules

rules have the following form:
target: dependencies ...
<tab> command
<tab> command2
<tab> command3

target - usually name of a file that is created by
the commands; but it can be any name

remove all object files
clean:
 rm -f *.o

Using Variables and Macros

 Simplify rules and reduce redundancy
 $@ = name of the target

 $^ = the dependencies

 Rule without using variables:

game: Game.o Board.o
 g++ –o game Game.o Board.o

 Same rule using variables:

game: Game.o Board.o
 g++ –o $@ $^

Predefined variables

CC Compiler, defaults to cc.

CFLAGS Passed to $(CC)

LD Loader command, defaults to ld

LDFLAGS Passed to $(LD)

$@ Full name of the target

$? Names of all dependencies which are out-of-date

$^ Names of all dependencies

$< The name of the current (single) dependency

http://www.gnu.org/software/make/manual/html_node/Implicit-Variables.html

Makefile design

 Do not write rules like:

 game: Game.cpp Board.cpp Board.h
g++ –o game Game.cpp Board.cpp

 requires compiling all files when anything changes

Can We Use Make with Java?
TicTacToe/
 Makefile
 src/
 src/tictactoe/ <--- package
 Board.java
 BoardSquare.java
 GameController.java
 GameUI.fxml
 Main.java
 TicTacToeGame.java

This does NOT work ('wrong package' error):
 cd src/tictactoe
 javac Board.java

Makefile for TicTacToe

JAVAC = javac -sourcepath src
#VPATH = where to find files needed by rules
VPATH = src/tictactoe
CLASSES = Board.class Piece.class ... \
 TicTacToeGame.class Main.class
FXML = GameUI.fxml

tictactoe.jar: $(CLASSES) $(FXML)
 jar cvf $@ -C src . # no so good

rule to make .class file from .java file
%.class: %.java
 $(JAVAC) $<

Demo - make tictactoe.jar

cmd> cd workspace/ttt

cmd> make clean

cmd> make

Problems with Java and Make

● Cyclic Dependencies!
● Bad design, but it does happen

● Hard to record all deps. in Makefile
● Code is in many directories for packages
● You have to run javac from top-level src dir

Piece BoardSquare

Can we Use Make for Python?

Yes! many Python projects use make

Automate any repetitive task:
● running testing and continuous integration
● download or update dependencies (pip)
● create a virtualenv
● initialize a project or database
● clean up

Reference

GNU make tutorial and user guide

https://www.gnu.org/software/make/manual/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Makefile rules
	Slide 8
	Predefined make variables
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	References

