

Type Checking

Type Checking

Verify that the rules for using data types are
obeyed, and that the correct types are used in
function calls, assignments, and other program
elements.

Examples:

lst = ["cat", "dog", "rat"]

sum(lst) # type error

for x in range(1.0,4.0): # type error:

 print(x) # int required

Static

static - fixed, unchanging, immobile

In computer programming:

anything that is done or known before run-time.

"static content" - fixed content in a web application, such
as images, fonts, CSS files, fixed web pages.

"static type checking" - type checking done before the
program is run.

 - done by a compiler or static type checking tool.

Dynamic

dynamic - characterized by change or activity

In computer programming:

anything that is done, created, or known
only when the code is run.

"dynamic content" - web pages generated at run-time
from a template. Content that changes over time.

"dynamic type checking" - verify type rules while the
program is running.

Java is Statically Typed

The types of all variables are known to the compiler.
The compiler catches type errors.

List<String> names = new ArrayList<>();

names.add("John");
names.add(3.0); // error. wrong type

// type inference: first is a String var
var first = names.get(1); // must be String

int sum = 1;
sum += Math.sqrt(3); // type error

Benefits of Static Typing

1. Compiler finds syntax errors

2. Also finds semantic (usage) and some logic errors

3. Better refactoring -- refactoring tools can find every
instance of a thing that is being refactored

Does Python do
Static Type Checking?

Meaning:

 does the Python interpreter check the types of
variables and expressions before executing the code?

Does Python do
Dynamic Type Checking?

Answer is not obvious.

Consider this:

what type is required for x and y?

def add(x, y):

 return x + y

add accepts many different types

add(2, 3)

add("hi", "bye")

add(Fraction(1,2), Fraction(2,3))

but this fails

add(2, "hi")

What People Say

Python does dynamic typing.

Python associates types with values rather than
variables.

Type checking is done on values.

Or maybe not at all ("duck typing")
– "just do it and see if it works".

Static versus Dynamic Binding

"Binding" refers to association of names with particular
pieces of code.

● binding of function names to function implementation
● binding of variable references to memory locations

Static Binding - a name is "bound" to particular code in
an unchanging (static) way.

Dynamic Binding - a name is "bound" to code in a
dynamic, changing way (at run-time).

@staticmethod

class Fraction:

 @staticmethod

 def gcd(m, n):

 """greatest common divisor"""

 # use Euclid's algorithm

gcd can be statically bound. We know exactly what code
will be invoked even before the program is run!

x = Fraction.gcd(60, 75)

Dynamic binding

lst = [Fraction(2,3), "hello", date.today()]

for x in lst:

 print(str(x))

2/3

hello

2021-11-01

str(x) is dynamically bound to the __str__() method of a
particular class (Fraction, string, datetime).

We don't know until run-time what kind of object x refers to,
or which class's __str__() method will be invoked.

Dynamic Binding and Polymorphism

Dynamic binding is needed to enable polymorphism.

The example from previous slide uses polymorphism.

lst = [Fraction(2,3), "hello",
 datetime.now()]

for x in lst:

 print(str(x))

2/3 __str__ of Fraction

hello __str__ of string

2019-11-17 15:50:34
 __str__ of datetime

Static Checking & Software Correctness

We want our software to be correct.

Static type checking finds programming errors
before the program is run.

Some type errors may also indicate logic errors.

Simple Static Type Checking

Specify that "add" only accepts string parameters:

 def add(x: str, y: str) -> str:
 return x + y

 if __name__ == '__main__':
 a = 2
 b = "hello"
 print(add(a,b))

"mypy" is a static type checking tool. Run it:

cmd> mypy add.py

Line 7: error: Argument 1 to "join" has
incompatible type "int"; expected "str"

 Example: Type Hints & Code Completion

def print_full_name(first, last):

 full_name = first + " " + last

 print(full_name)

We want to use the title() method on first and last, so
the output of print_full_name('joe', 'biden') is:
 'Joe Biden'

In an IDE, put the cursor after first and type ".":

 full_name = first.

then press CTRL + SPACEBAR.

What methods does the IDE suggest?

Nothing!

Simple Example with Type Hints

def print_full_name(first: str, last: str):

 full_name = first + " " + last

 print(full_name)

Now type "." after "first":

 full_name = first.

then press CTRL + SPACEBAR.

Now the IDE suggests the string methods!

(A smart IDE suggests only methods that return a string)

Example
class Scorecard:

 """Accumulate scores and compute their average."""

 def __init__(self):

 self.scores = []

 def add_score(self, score):

 self.scores.append(score)

 def average(self):

 """return average of all scores"""

 return sum(self.scores)/max(1,len(self.scores))

if __name__ == "__main__":

 scores = Scorecard()

 n = input("input a score: ")

 scores.add_score(n)

 n = input("input another score: ")

 scores.add_score(n)

 print("The average is " + scores.average())

This code contains 2
distinct errors. Most
IDE won't detect them.

Exercise - part 1

1. Download scorecard.py to an empty directory.

2. Open it in your favorite IDE.

3. Does the IDE show any errors?

4. Add type hints -- one at a time so you can see the
effect.

Hint 1: "hint" the parameter: add_score(self, score: float)

 - What happens?

 - Does the IDE suggest there is an error in __main__ ?

Exercise - part 2

Hint 2: "hint" the return type:

 def average(self) -> float:

 - What happens?

 - Does IDE detect an error in code?

Exercise - part 3

Hint 3: Hint the type of items in the list

 from typing import List

 ...

 self.scores: List[float] = []

Does the IDE detect another error?

When you add a List[float] hint to self.scores,
the IDE detects errors even without Hint 2 (return
type)!

Tools for Static Type Checking

1. mypy - https://mypy.readthedocs.io/

– installation: pip install mypy

– check a file: mypy filename.py

– strict checking: mypy --strict filename.py

– Getting Started Guide has many examples:
https://mypy.readthedocs.io/en/latest/getting_started.
html

2. PyCharm has built-in static type checking

3. VS Code - Pylance extension does static type checking

Typing and Encapsulation

In Scorecard, the scores are assumed to be numbers.

Can we allow scores to be objects?

score = Score("Quiz 1", 10.0)

In Scorecard we could write:

def average(self):

 # add the values of the score objects

 total = sum(float(x) for x in self.scores)

 # don't divide by zero if no scores

 return total/max(1, len(self.scores))

Typing and Encapsulation

What is the required behavior of a Score object,

so that Scorecard can call float(score) for any score?

def add_score(self, score: ?):

Score
name: string
score: float

 ???
Has a float valueWhat "type" specifies:

"this object has a float
value, and you can call
float(x) to get it"?

See: typing package.

Float-able Type?

Answer:

from typing import SupportsFloat

class Score(SupportsFloat):

Revised Score class

from typing import SupportsFloat

class Score(SupportsFloat):
 def __init__(self, name: str,
 value: float)
 self.name = name
 self.value = value

 def __float__(self) -> float:
 return self.value

quiz1 = Score("Quiz 1", 9.0)

Typing and Behavior

What is the required behavior of a Scorecard so that

we can use Scorecard as data in a for loop?

scorecard = Scorecard()

can this possibly work?

for score in scorecard:

 print(score)
 Scorecard
scores:
 List[Score]

 ???
__iter__():
 creates an iterator

for loop

What kind of objects can be used as data in a "for" loop?

for x in data:

 print(x)

data can be:

string (str)

list

dict

range

File

tuple

 data

Iterable
__iter__(): Iterator

Iterable

Iterable - a type of object (usually a collection) that
provides a method for creating an Iterator.

Example:

stuff is an Iterable collection

stuff = ("first", "second", "third")

iterator = iter(stuff)

next(iterator) # "first"

next(iterator) # "second"

next(iterator) # "third"

Iterator
__next__():
 next_element

Iterable
__iter__(): Iterator

creates

Iterator

Iterator - an object that lets you sequentially access
elements from some source by calling next(iterator).

Example:

stuff is an Iterable collection

stuff = ("first", "second", "third")

myiter = iter(stuff)

iterate over elements

print(next(myiter))

print(next(myiter))

print(next(myiter))

Iterator
__next__():
 next_element

Iterable
__iter__(): Iterator

creates

Declare a Class "has" a Type

The Type specifies some behavior (methods).

To declare that your class provides this behavior, write the
Type name as a parent type.

Example:

Declare that Scorecard can create an
Iterator that returns Scores.

class Scorecard(Iterable[Score])

 """scorecard creates an iterator for scores"""

 def __iter__(self):
 return iter(self.scores)

Types You Should Know

These types specify that a class provides some behavior.

What behavior (methods) does each one guarantee?

Container

Collection

Iterable

Iterator

Dict

Mapping

List

Set

Sequence

Start by reading the collections.abc document page.

Very specific Types

Some types specify a single behavior.

x: Sized

 - can call len(x) or x.__len__()

y: SupportsFloat

 - can call float(y) or y.__float__()

Example:
 Declare that Scorecard supports len(scorecard):

class Scorecard(Sized)

 def __len__(self) -> int:

 """the size is just the number of scores"""
 return len(self.scores)

Class Can Provide Many Behaviors

A class can declare that it provides many different kinds of
behavior, using types.

Example:
Scorecard creates Iterators and has a length.

class Scorecard(Iterable[Score], Sized)

 def __len__(self) -> int:

 """the size is just the number of scores"""
 return len(self.scores)

 def __iter__(self) -> Iterator[Score]:
 """return an iterator for scores"""
 return iter(self.scores)

Resources

Mai's write-up on "type hinting" in ISP19/problems

https://github.com/ISP19/problems/tree/master/type-hints

Python typing package - defines types

 https://docs.python.org/3/library/typing.html

Python abstract base collections (abc) package

 https://docs.python.org/3/library/collections.abc.html

 This page explains the behavior and methods each
collection type provides.

Helps you understand "types" in the typing package.

Another Resource

Mypy Getting Started Guide many short examples of
adding type hints to code.

https://mypy.readthedocs.io/en/latest/getting_started.h
tml

Python Type Checking Guide on RealPython

 https://realpython.com/python-type-checking/

 Describes dynamic typing, duck typing, and how to
use type hinting.

Iterators

Python Iterators explains difference between Iterable and
Iterator, with examples

 https://www.w3schools.com/python/python_iterators.asp

Iterators, Generators, Containers, and itertools has more
detailed explanation, with code examples.

https://www.datacamp.com/community/tutorials/python-
iterator-tutorial

Common Errors

1. 'list' and 'set' are not same as typing.List, typing.Set

scores: list[float] # Error

2. Classes in collections.abc are not type hints

from collections.abc import Set

scores: Set[float] # Error

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

