

Chapter 5C H A P T E R F I V E

Reviews

74 C H A P T E R F I V E

REVIEW IS ANY ACTIVITY IN WHICH A WORK PRODUCT is distributed to reviewers who examine it

and give feedback. Different work products will go through different kinds of reviews: the

team may do a very thorough, technical review of a software requirements specification,

while the vision and scope document will be passed around via email and have higher-

level walkthroughs. (This book was reviewed by a wide range of experts including sea-

soned project managers, university faculty, and business executives.) This chapter covers

several kinds of reviews, each of which may be appropriate for different work products

and at various points during the software project.

Reviews are useful not only for finding and eliminating defects, but also for gaining con-

sensus among the project team, securing approval from stakeholders, and aiding in profes-

sional development for team members. In all cases, the work product coming out of the

review has fewer defects than it had when it was submitted—even though the author

thought it was “complete” before the review. Every defect that is found during a review is

a defect that someone did not have to spend time tracking down later in the project.

There are many ways that a work product can be reviewed. Each kind of review is appro-

priate for different audiences or kinds of work product. The purpose of all reviews is to

ensure that each reviewer is satisfied that the work product is correct, and that his or her

perspective is represented.

The goal of every review is to save the project team time and effort. It’s much easier to fix

the problems on paper, before they cause software to be built incorrectly. An effective way

to make sure defects are caught early is to schedule many reviews over the course of the

project to catch the defects before they become deeply embedded in the software. By

reviewing each work product before it is approved, a project manager sets those checkpoints

and ensures that defects are caught early, before they are repeated in later work products.

Inspections
An inspection is one of the most common sorts of review found in software projects. The

goal of the inspection is for all of the inspectors to reach consensus on a work product and

approve it for use in the project. Commonly inspected work products include software

requirements specifications (see Chapter 6) and test plans (see Chapter 8). In an inspec-

tion, a work product is selected for review and a team is gathered for an inspection meet-

ing to review the work product. A moderator is chosen to moderate the meeting. Each

inspector prepares for the meeting by reading the work product and noting each defect. In

an inspection, a defect is any part of the work product that will keep an inspector from

approving it. For example, if the team is inspecting a software requirements specification,

each defect will be text in the document that an inspector disagrees with. The goal of the

inspection is to repair all of the defects so that everyone on the inspection team can

approve the work product.

Most project managers have seen their projects get delayed because of scope creep and

unnecessary work caused by changes that, had they been caught earlier, would have

required much less work to fix. One of the most common complaints from project team

A

R E V I E W S 75

members is that they would have built the software differently had they been given a bet-

ter understanding of what was needed from the beginning. One important root cause of

these problems is defects in work products that are not caught until long after those work

products have been used as the basis for later project activities.

The most important reason to inspect documents is to prevent defects. If the team starts

building software based on a vision and scope document that has a serious defect, eventu-

ally the entire project will have to stop and reverse course. This can be very expensive in

both effort and morale, because the team will need to backtrack and revise the require-

ments, design, code, test plans, and other work products that they have already put a lot

of effort into implementing. The same goes for defects that were caught in other work

products—defects missed in a design specification, for example, will have to be corrected

later after they have been coded. The longer a defect goes uncorrected, the more

entrenched it is in other work products; the more entrenched it is, the more time and

effort it will take to fix.

According to a report by the Software Engineering Institute, it costs more to not do inspec-

tions than it does to do them. A national survey of software engineering teams found that

in a typical inspection, four to five people spend one to two hours preparing for inspec-

tions, followed by one to two hours to hold an inspection meeting. The total effort

required for the inspection, therefore, is 10 to 20 person-hours; this effort results in the

early detection of an average of 5 to 10 defects. (On the average, these defects, if left in the

document, would require either 250 to 500 lines of new code or modification of 1000 to

1500 lines of legacy code to repair if they were eventually caught—which would almost

certainly require well over 20 person-hours of programmers’ time!) This is a very high

return on investment; few tools, techniques, or practices are as effective as inspections for

increasing the quality of the software.

Inspections are easy to implement, and have an immediate effect on quality and consen-

sus-building. A small team spending a few hours inspecting a work product will catch

errors that could potentially save weeks, or even months, of wasted effort. An effective

inspection requires a well-chosen team, a moderator who is able to run the meeting, and

an author who is willing to listen to criticism and fix the work product being inspected.

Choose the Inspection Team

The job of the inspection team is to work with the author of the document in order to

identify any defects. A defect is any problem in the document that will prevent an inspector

from approving it. Once a problem is identified, the inspection team must work to come

up with a solution that will fix the problem. When the team meets to inspect the docu-

ment, they will be expected to come up with solutions to the defects that they find. The

project manager must select a team that can perform this function. This means that each

inspector needs to have enough familiarity with the project and the way the work product

will be used to understand its problems and propose changes. (Team members who use

the document in their day-to-day work should have no problem with this.)

76 C H A P T E R F I V E

The project manager must choose a team of 3 to 10 inspectors. Ideally, each inspector

should represent a different perspective on the work product. A designer will use a docu-

ment for different tasks than a programmer will. It is important that each person who will

use the document has his views represented in the inspection team. This is critical for

catching all of the defects.

During the inspection, the team works to identify any defects in the work product. They

are expected to evaluate it from two perspectives. The most important evaluation is from

the perspective of their own expertise, where the inspectors identify any issues that will

interfere with the development of the project. For this role, they must draw on their engi-

neering skills and experience with past software projects. But inspectors should also eval-

uate the work product from a common sense perspective. Each inspection team member

should think about the ideas in the vision and scope document and consider several ques-

tions: does the work product being inspected fulfill the needs laid out in the vision and

scope document? Does it really answer the problem posed by earlier work products? Will

it be able to serve as a basis for all of the work products that will come later in the prod-

uct? Good inspection team members will be able to keep these questions in mind.

Select a Moderator

The project manager must choose a moderator to run the inspection meetings. This person

must be able to objectively evaluate the work product being inspected and understand any

issues that are raised during the inspection. The moderator will also need to be able to

control the meeting. If a few inspectors start a discussion to address a defect that might

take a lot of time, the moderator will have to be able to stop that discussion and table it as

an open issue. It takes some practice to keep control of a meeting.

The project manager should be an inspector, so an independent and unbiased moderator is

needed. A good moderator will have sufficient technical background to understand the

work product being inspected. It is important for the moderator to be objective, and not to

favor one perspective over another during the inspection meeting. In some organizations,

the moderator is never a part of the project team, and does not have a stake in the project.

However, some people have found it useful to select as moderator a team member who

will not be inspecting the document, because the moderator should have an understand-

ing of the issues discussed during the meeting. But in that case, that team member must be

willing and able to stay objective by allowing every inspector equal opportunity to bring

up defects, and by ensuring that each issue is discussed and either resolved or tagged as an

open issue.

The hardest part of the moderator’s job is to prepare the inspectors and the author for crit-

icism of the work product. When somebody writes a document, he may be uncomfortable

with the idea that it contains errors. It’s his work and, in our day-to-day lives, few of us

are used to having our work critiqued. But all documents have defects, and authors need

to get comfortable with this idea. This is by far the most challenging part of implementing

inspections: getting people comfortable with having their work criticized.

R E V I E W S 77

To address this, the moderator must help the author understand the benefit of the criti-

cism. It’s the moderator’s job to make sure that the meeting does not become personal

criticism, and that the comments are always constructive. An effective way to do this is to

focus the discussion on each defect and come up with a specific resolution. It’s the job of

the inspection team to do more than just identify the problems; they must also come up

with the solutions. The moderator compiles all of the defect resolutions into an inspection

log (see Figure 5-1 for an example).

At the top of each inspection log is information about the inspection meeting: what work

product was being reviewed, when it was held, who was in attendance, whether or not

the work product was read by each inspector, how long each inspector spent reviewing

the work product, and how many issues (including both defects and open issues) were

found. Each work product should have a unique version number, to ensure that the

inspection log can be matched up to the proper version of the work product.

The inspection moderator should ask each team member how long he or she spent

reviewing the work product and record that number in the log. This stands as a record of

how much effort went into the work product, which will help in future estimation, project

planning, and impact analysis activities. If any inspector failed to review the work product,

the moderator must halt the meeting and reschedule it in order to allow all of the inspec-

tors enough time to review the work product.

F I G U R E 5 - 1 . Sample inspection log

1

Issue no.
Identified
by

Global

Section/page

Quentin

Issue

The term “standard contract” should be
replaced with “pro-forma contract.”

2 Section
3.1.1 Line 165

Sophie The contents of the cells in the table are out of order.
It looks like some cells were marked down.

3 Section 3.1.2
Line 190

Jill Specify the look up is by contract number
and artist name.

4 Section 3.3b
Line 623

Sophie Tile of the section needs to be changed to “Deletion
file (maintenance).” To be consistent with section 3.2.1 #1.

Mike (project manager)

Attendees
Read
document

Y

Time spent preparing

Author

Barbara (VP) Y 1.0 hours

Quentin (requirements analyst) Y 2.0 hours

Sophie (senior QA engineer Y 3.0 hours

Jill (senior programmer) Y 0.5 hours

16

March 16, 2003Review date:

of issues:

78 C H A P T E R F I V E

The rest of the inspection log contains a list of action items. Each item is marked with the

exact location of the defect and the solution proposed by the inspection team. In many

cases, the solution is a wording change. The work product contains a specific sentence that

is unclear, ambiguous, or incorrect. After a brief (usually under five minutes) discussion,

the inspection team identifies wording that will correct the defect. In this case, the moder-

ator writes the new wording in the inspection log, and the author agrees to update the

work product accordingly.

In other cases, the solution is too complex to be identified at the inspection meeting. If the

discussion lasts too long, the moderator should stop it and add an open issue to the inspec-

tion log. This issue must be assigned to the author and, optionally, one or more inspection

team members; it is their responsibility to resolve the issue. The log item for this must con-

tain a specific set of actions to be performed (“meet with Marketing to research this missing

feature,” “rewrite lines 534 through 539 so system will perform data check on report B”).

It is important that the inspection log is readily available to all inspectors. After the meet-

ing, it should be distributed to all inspectors, and stored along with previous versions of

the document. If the document is checked into a version control system (see Chapter 7),

then each inspection log should be checked in along with it. All changes must be made

before the work product can be inspected again: open issues must be closed, defects must

be repaired, and every issue reported in the log must be addressed.

Inspect the Work Product

During the inspection meeting, a moderator leads the team page by page through a

printed copy of the work product. The purpose of the meeting is to identify and fix any

defects. The moderator does not actually read each page out loud or give the team time to

read the page. The team members read the document prior to the inspection, during their

preparation. When the moderator goes through the document page by page, he simply

asks the reviewers for their defects on page 1; once those are done, he asks for the defects

on page 2 and continues through the rest of the document.

Prior to the inspection meeting, each team member should be given a checklist to help her

identify defects. Checklists will be different for different kinds of work products. (In other

chapters, checklists will be included for each type of work product that should be

inspected.) The script in Table 5-1 describes the process for an inspection meeting.

T A B L E 5 - 1 . Inspection meeting script

Name Inspection meeting script

Purpose To run a moderated inspection meeting

Summary In an inspection meeting, a moderator leads a team of reviewers in reviewing a work product
and fixing any defects that are found.

Work Products Input
Work product being inspected

Output
Inspection log

R E V I E W S 79

Preparation

Each inspector reviews the printed copy of the work product individually, prior to the

inspection meeting. Any defects that are found should be marked on the copy so that

they can be brought up in the meeting.

In many organizations, the moderator requires that each inspector submit a written list

of defects that were found prior to the inspection meeting, and all defects are compiled

into a single inspection log and distributed to the entire inspection team. This optional

step can reduce the time required for the meeting because instead of going through the

entire work product page by page, the moderator only goes through the log, and the

author and inspectors have time to prepare in advance to respond to the defects.

Overview

The moderator verifies that each inspection team member has read the printed copy of

the work product. If any team member has not prepared, the inspection is aborted and

rescheduled for a later date.

Page-by-page review

The moderator turns to the first page of the work product and asks if anyone found any

issues on that page. Team members bring up each issue that they found during their

preparation. For each issue, the moderator leads a discussion between the team and the

author to identify new wording that will resolve the issue. (For work products that are

not text or documents, the team describes the change in sufficient detail so that the

repair of the defect is unambiguous to the author.) The team should come up with the

actual text that will be inserted into the document in order to fix the defect; the moder-

ator should add this fix to the inspection log. If the team cannot come up with a fix on

Entry Criteria A moderator must be selected, as well as team of 3 to 10 people. A work product must be
selected, and each team member has read it individually and identified all wording that must
be changed or clarified before he or she will approve the work product. A unique version
number has been assigned to the work product.

Basic Course of Events 1. Preparation. The moderator distributes a printed version of the work product (with line
numbers) to each inspector, along with a checklist to aid in the review. Each inspector
reads the work product and identifies any defects to be brought up at the meeting.

2. Overview. The inspection meeting begins. The moderator verifies that each team member
is prepared.

3. Page-by-page review. The moderator runs through the work product page by page. Inspec-
tors indicate where there are defects. Each defect is either resolved or left as an open
issue. The moderator adds each defect to the inspection log.

4. Rework. The author repairs the defects identified in the inspection meeting.

5. Follow-up. Inspection team members verify that the defects were repaired.

6. Approval. The inspection team approves the work product.

Alternative Paths 1. During Step 2, if any team member has not read the work product, then the inspection is
halted. The meeting is rescheduled and the script returns to step 1.

2. During Step 4, if an inspection team member discovers additional defects in the work
product, then the moderator calls another meeting and the process returns to step 1.

Exit Criteria The work product has been approved.

T A B L E 5 - 1 . Inspection meeting script (continued)

Name Inspection meeting script

80 C H A P T E R F I V E

the spot, or if discussion lasts more than about five minutes, the moderator adds it to

the inspection log as an open issue and assigns it to the team member who brought it up

(and anyone else who is involved), so he can work with the author to resolve it. Once

all issues for the page are discussed, the moderator moves to the next page in the work

product.

Rework

After the inspection meeting is over, the author makes the changes in the inspection log

and works with the inspection team members to resolve all open issues. When the

changes are complete, the author turns the updated work product over to the moderator.

Follow-up

The moderator distributes the updated work product to the inspection team. Each team

member verifies that he can now approve the work product. If there are any issues that

were not fully resolved or additional defects that were not caught, he notifies the mod-

erator, who calls another inspection meeting and starts the inspection process over

again. Once the team gets through an inspection without any open issues and can agree

on any changes that must be made, the work product can be updated and distributed

for approval.

Approval

If any inspector feels that there are still further issues raised by the corrections to the

work product, another inspection meeting can be held; however, the project manager

and author can also work individually with everyone involved to make sure that the

changes are adequate. Once everyone on the team feels that the changes they identified

are adequate, they can approve the updated work product without holding another

inspection meeting.

The moderator adds a signature page to the work product and distributes a printed ver-

sion for signature approval. The signed work product is archived.

Manage the Author’s Expectations

Many people who have implemented inspections have found that it is very difficult for

authors to sit through an inspection meeting without defending their work. Instead of

providing clarification that is used to update the work product, they take over the discus-

sion and, by being defensive and loud, get the inspectors to agree not to report defects.

This is counterproductive: it leads to situations when the inspection team understands

what the author meant, but the work product, which remains unchanged, does not reflect

this. It is the moderator’s job to keep the discussions on track and prepare the authors for

the inspection.

A major challenge of the moderator role is keeping the author from altering the understand-

ing of the document through discussion. The purpose of the discussions is not to teach the

inspectors about the project; it is to change the document so that the author and all of the

inspectors will approve it. There is a simple rule in document inspection: if there is a misun-

derstanding about words in the document, they need to be clarified in the document, and

not just in the minds of the people who happened to attend the inspection meeting.

R E V I E W S 81

Each inspector should keep in mind the fact that if he did not understand something after

reading a document, then it is probably the document’s fault, not the reader’s. If he did

not understand it, then it is likely that another reader will also have the same problem

(especially considering that most software documents will be used as reference later, by

people who are less familiar with the project than the inspectors). For this reason, it is

very important that inspectors make it clear when they do not understand something.

This is difficult for many inspectors: it’s hard for people to admit that they did not under-

stand something that they have read. It is the moderator’s job to draw these misunder-

standings out of the inspectors during the discussions of each defect.

The author should be prepared to listen to the inspection team discuss defects. It is tempt-

ing to get defensive and try to defend each defect. The author must remember that if

someone thinks that an issue is worth bringing up in the meeting, there may be some

ambiguity there, no matter how clear it seems to the person who wrote the words.

One way to help the author feel less defensive is to take the option (described above, under

“Preparation”) in which the inspection team members submit their defects to the moderator

before the inspection meeting. The moderator compiles all of the defects into a log, which is

then sent back to the inspection team. This is helpful because it gives the author advance

warning of all of the defects that will be discussed. It also allows the inspection team to pre-

pare solutions to the defects in advance. However, it requires more effort on the part of the

moderator, who has to look through all of the defects up front in order to group redundant

defects together and make sure that each one is described clearly.

In some organizations, project managers have found it useful to require that the authors

not talk in the inspection meetings, to let the document stand on its own. In others, the

author is excluded from the meeting entirely, and is simply given the inspection log.

Although this sounds drastic and impersonal to some people, some moderators have

found this to be a very useful practice, as the team feels that they must put a lot of effort

into making the inspection log as self-explanatory as possible. However, while these prac-

tices do prevent the author from skewing the results of the inspection, they also cause the

author to miss out on important discussions; this is a costly trade-off. As long as the author

is able to listen to the moderator’s rules, especially when it comes to identifying and

addressing defects, he can be a valuable participant in the inspection process.

Help Others in the Organization Accept Inspections

Over the many years that inspections have been practiced in software organizations,

project managers have often found that when they attempt to implement inspections, the

team pushes back. This opposition occurs because, to some people, it is not intuitively

obvious that spending the time inspecting the work products up front will save the team

from having to fix the software later. The project manager should prepare for potential

resistance by understanding exactly why inspections are important.

Project managers often find that engineers are very unhappy with the idea of inspections.

To some, inspections seem unnecessarily “bureaucratic.” This is especially unfortunate

82 C H A P T E R F I V E

because inspections are one of the most effective ways to prevent defects and make the

most efficient use of the engineers’ time. There are few tools or techniques that have such

a high potential savings in effort. For each hour spent inspecting documents, the team

saves many hours that would otherwise be lost on correcting problems that would have

been coded incorrectly—preventing the very tasks that engineers find most frustrating.

Luckily, a small number of objections tend to be raised most of the time, and each of these

objections has a straightforward response. In the end, it is usually not hard for a project

manager to show most reasonable people that inspections are worth doing.

The most effective way a project manager can sell inspections to the organization is to show

the savings in terms of time and money. Each inspection yields defects that would have been

much more expensive to fix had they not been found; it should not be hard to give a rough

idea of just how much time and money would have been wasted on those defects.

Another way the project manager can sell inspections is by pointing out the knowledge

transfer benefits. By instituting inspections and code reviews, engineers other than the

author of a work product are cross-trained on it, and can maintain it in the future if the

author is busy with another project or has left the organization. Another way a project

manager can help people accept inspections and understand their benefit is to run the first

inspection meetings using work products created by people who are widely respected in

the organization. Once others see the inspections run well and respectfully, they will be

much more likely to accept the same practice applied to their own work.

When a project manager starts working toward implementing inspections, there are three

objections that come up most often: people feel that inspections take too long, they do not

like their work criticized, and they are protective of the final product. Luckily, it is not

hard to anticipate these objections and give effective responses. (See Chapter 9 for more

advice on making changes in an organization.)

“Inspections take too long.”

Some team members seem to be opposed to anything that seems “bureaucratic.” To them,

inspections are just paper-shuffling meetings that waste their time. They should be writing

code (or design specifications, test plans, requirements, etc.), and don’t have time to waste

just so some manager can check some box somewhere.

To convince someone with this mindset that inspections are necessary, the project man-

ager must show him that every minute spent doing inspections can save many more down

the road. Over the years, software engineering researchers have studied thousands of soft-

ware projects in many different kinds of organizations. They have found again and again

that a defect that takes a few minutes to fix in a vision and scope or a use case document

will require hours, days, or weeks to fix in code or testing.

The project manager should explain that a typical inspection meeting will take less than

two hours. If each person at the meeting finds a single defect, it more than makes up for

the time that he spent reading and correcting the document. When looked at from this

perspective, doing the inspection saves time.

R E V I E W S 83

“I don’t like people criticizing my work.”

Many people are uncomfortable putting their work up for review. They are unsure of

their documents, and they are not used to having people point out their mistakes. It is

very important to recognize this, because it often falls on the project manager to help the

team members get comfortable with having their work put under a magnifying glass.

When this objection is raised, the project manager can point out that everyone makes mis-

takes, and that usually those mistakes are not the fault of the author. Frequently, when

there is a problem in a document, it is because the author did not have enough informa-

tion: bringing in the rest of the team can fill in those gaps.

The project manager can also point out that while it may be uncomfortable to have mis-

takes pointed out during the inspection, it’s much more uncomfortable when those mis-

takes are left in the document. The author of a use case document may feel bad

momentarily when defects are pointed out and corrected during an inspection meeting.

But if he feels bad then, he will feel terrible if those defects are not caught until after the

team spends months designing, programming, and testing the software, only to discover a

“bug” that turns out to be a problem in his use case document. Instead of feeling bad

when the inspection team points out problems, he should feel relieved that they were

caught before they could cause project delays.

Defects should be discussed in terms of what is best for the work product or the project,

not as criticisms of the author. It is very important that the moderator be extremely strict

during the inspection meetings toward people who make rude personal comments. The

moderator should enforce professionalism, and should ensure that every inspection meet-

ing is conducted in a positive manner.

“I built it, and only I can say when it’s done.”

Some people are very protective of their work, and simply don’t want other people to crit-

icize it. In these cases, the author feels that she is the expert, and feels that there’s nobody

else in the organization who knows more about this subject than she does. Be very careful

when confronting her—this is an emotionally charged situation, and it’s very easy to turn

this person off permanently. It is important for the project manager to be nonconfronta-

tional. The project manager should work to influence this person, not to force her into a

situation she doesn’t want to participate in.

The best argument in this situation is to show her that the inspection is a tool that is there

for her to use. It is like a spellcheck in a word processor: the document is always better

after the spellcheck.

Nobody, no matter how good he is at his job, can deliver a perfect document. It is impossi-

ble to know exactly what’s in the heads of the intended readers. There is no way to

include the entire context in a document. There will always be technical or organizational

concepts that would take pages and pages to explain, but that everyone is familiar with.

84 C H A P T E R F I V E

For example, a use case document for accounting software will not explain how double-

entry accounting works; it will assume that every reader is familiar with the concept.

When an inspector finds a defect, he is helping the author identify areas that need to be

explained. The author assumed that each reader fully understood a concept: it turned out

that the reader needed some clarification after all. In this way, the document can be

adjusted to the level of its specific readers.

The hesitant author will generally recognize that she has expertise that her readers do not

have. Explain that while she can make an educated guess at what context and background

needs to be included, she has no way of knowing if it is enough. The inspection process is

an efficient technique to help her fix this.

N O T E
More information on inspections can be found in Software Inspection by

Tom Gilb and Dorothy Graham (Addison Wesley, 1993) and Peer Reviews

in Software by Karl Wiegers (Addison Wesley, 2002). Information on the

effectiveness of software inspections can be found in the Software Tech-

nology Roadmap: http://www.sei.cmu.edu/str/.

Deskchecks
A deskcheck is a simple review in which the author of a work product distributes it to one

or more reviewers. In a deskcheck, the author sends a copy of the work product to

selected project team members. The team members read it, and then write up defects and

comments to send back to the author. Work products that are commonly reviewed using a

deskcheck include vision and scope documents (see Chapter 2) and discussion summaries

(see Chapter 6).

There are times when a full inspection is neither necessary nor useful. Some work prod-

ucts do not benefit enough to warrant the attention of an entire inspection team because

they do not need consensus or approval. In these cases, the author simply needs input

from others to prevent defects, but does not require that they approve the document. In

these cases, the deskcheck is a useful review practice.

Unlike an inspection, a deskcheck does not produce written logs that can be archived with

the document for later reference. There is no follow-up meeting or approval process. It is

simply a way for one team member to check another’s work. Deskchecks are not formal

reviews (where “formal” simply means that it generates a written work product that

meets a certain standard and is archived with the rest of the project documentation); there

is no standard for the results of the deskcheck. The reviewers simply review the work

product and return the results. There is no moderator, and there is not necessarily any

consensus generated.

But, despite the lack of formality, the deskcheck is a very important tool for a project

team, and there are many times when the project manager will build deskchecks into the

organization’s software process. If a work product does not need approval by a team but is

R E V I E W S 85

still a critical part of the software process, the project manager may require a deskcheck in

order to ensure that it does not have defects. For example, many QA teams employ auto-

mated test scripts, and it is usually necessary to ensure that the finished automated prod-

uct actually covers the test plan that it was meant to automate. However, it would be

unnecessary and very time-consuming to ask programmers, requirements analysts,

project managers, and stakeholders to cross-reference each script with a test plan. A

deskcheck can be used to verify that the script is correct, and to ensure that more than one

QA engineer has taken responsibility for the quality of the script.

Sometimes a checklist is used to ensure that the work product meets the organization’s

standards. However, unlike an inspection, a deskcheck can be performed without a check-

list. The deskcheck usually relies entirely on the reviewer’s knowledge of the project and

professional standards for the work product.

Figure 5-2 contains an example of comments from a deskcheck that was used by a tester

to find defects in an automation script. In this case, the entire review was performed via

email: the author mailed the script to the reviewer, and the reviewer read it and emailed

the comments back to the author. These comments are much simpler than the inspection

log in Figure 5-1. In an inspection, each log entry must either resolve a defect or indicate

that it is an open issue that must be resolved. Deskcheck comments can simply point out

issues or raise questions without having to supply solutions or promise a resolution. There

was no follow-up or approval, and the reviewer had no more contact with this script.

Deskchecks can be used as predecessors to inspections. In many cases, having an author of

a work product pass his work to a peer for an informal review will significantly reduce the

amount of effort involved in the inspection. Many defects can be caught by a single person

reviewing a document. Approval and consensus is built later on during the inspection

meeting; this is simply a way of saving effort. After a deskcheck, many authors will feel

much more comfortable sending their document into an inspection—it will often help the

author to be more objective and to take the inspection comments less personally.

F I G U R E 5 - 2 . Sample deskcheck comments

Global

Location Comments

Script does not adequately copy databases in when the data changes.

Case 14 The test plan logs in as “Administrator;” this script logs in as “Admin.”

Case 52, 53 What exactly is printed? It’s not clear, you should be looking for specific data.

Case 61 The test plan tests all of the preferences, but the script only tests the first five.

Sophie (senior QA engineer)

Dean (junior QA engineer)

Contract certification-automated test script #TP-491-A

8/12/03Review date:

Title:

Author’s name:

Reviewer’s name:

2No. of review hours:

86 C H A P T E R F I V E

Finally, a deskcheck can be useful to review a work product that is not meant to be

inspected at all. For example, many requirements analysts will generate a discussion sum-

mary after a series of interviews and elicitation sessions (see Chapter 6). This is not a work

product that is used in later stages of the software process; rather, it is an intermediate docu-

ment used to generate the software requirements specification. A deskcheck is useful in this

case to help interviewees and other requirements analysts identify any information gathered

during the interviews that is inaccurate or unclear. No approval is needed, and the require-

ments analyst is free to ignore any of the comments. The deskcheck simply serves as a

checkpoint to ensure that mistakes are caught and addressed as early as possible.

N O T E
More information on deskchecks can be found in Peer Reviews in Software

by Karl Wiegers (Addison Wesley, 2002).

Walkthroughs
A walkthrough is an informal way of presenting a technical document in a meeting. Unlike

other kinds of reviews, the author runs the walkthrough: calling the meeting, inviting the

reviewers, soliciting comments, and ensuring that everyone present understands the work

product. It typically does not follow a rigid procedure; rather, the author presents the

work product to the audience in a manner that makes sense. Many walkthroughs present

the document using a slide presentation, where each section of a work product is shown

using a set of slides. Work products that are commonly reviewed using a walkthrough

include design specifications (see Chapter 7) and use cases (see Chapter 6).

Walkthroughs are used when the author of a work product needs to take into account the

perspective of someone who does not have the technical expertise to review the docu-

ment. For example, a requirements analyst must make sure that the use cases she builds

will provide the functionality that the users need, but the user representatives may not

have seen use cases before and would be overwhelmed by them. If these users are simply

included as part of an inspection team, it is likely that they will read the document and,

failing to find many defects, sit silently through the inspection meeting without contribut-

ing much. This is not their fault—their training is in the business of the organization, not

in reading and understanding software engineering documents. This is where a walk-

through can be a useful technique to ensure that everyone understands the document.

Before the walkthrough, the author should distribute any material that will be presented

to each person who will be attending. For example, if the walkthrough is done as a slide

presentation, copies of the slides should be emailed to the attendees. If only a portion of

that material is going to be covered, that should be indicated as well.

During the walkthrough meeting, the author should solicit feedback from the audience.

This is an opportunity to brainstorm new or alternative ideas, and to check that each per-

son understands the document that is being presented. The author should go through

parts of the document to make sure that it was presented in as clear a manner as possible.

R E V I E W S 87

These guidelines can help an author lead a successful walkthrough meeting:

• Verify that everyone is present who needs to review the work product. This could

include users, stakeholders, engineering leads, managers, and other interested people.

• Verify that everyone present understands the purpose of the walkthrough meeting and

how the material is going to be presented.

• Describe each section of the material to be covered by the walkthrough.

• Present the material in each section, ensuring that everyone present understands the

material being presented.

• Lead a discussion to identify any missing sections or material.

• Document all issues that are raised by walkthrough attendees.

After the meeting, the author should follow up with individual attendees who may have

had additional information or insights. The document should then be corrected to reflect

any issues that were raised.

N O T E
Additional information on walkthroughs can be found in Peer Reviews in

Software by Karl Wiegers (Addison Wesley, 2002)

Code Reviews
A code review is a special kind of inspection in which the team examines a sample of code

and fixes any defects in it. In a code review, a defect is a block of code that does not prop-

erly implement its requirements, that does not function as the programmer intended, or

that is not incorrect but could be improved (for example, it could be made more readable

or its performance could be improved). In addition to helping teams find and fix bugs,

code reviews are useful for both cross-training programmers on the code being reviewed

and for helping junior developers learn new programming techniques.

Select the Code Sample

The first task in a code review is to select the sample of code to be inspected. It’s impossible

to review every line of code, so the programmers need to be selective about which portion

of the code gets reviewed. Many teams have found that it takes about two hours to review

400 lines of code (in a high-level language such as Java), although this estimate differs

dramatically from team to team and depends on the complexity of the code being

reviewed. At that rate, there is no way a team could review all of the code for a software

project. Nor would the team want to—in any program, there is a good deal of uninterest-

ing code that looks very similar to the code already developed in previous applications,

which has a lower risk of containing as many defects.

The purpose of any inspection is to find and repair defects. Since a relatively small portion

of the code will be reviewed, it’s important to review the code that is most likely to have

defects. This will generally be the most complex, tricky, or involved code.

88 C H A P T E R F I V E

There are a few useful rules of thumb that are helpful:

• Is there is a portion of the software that only one person has the expertise to maintain?

That may be a good candidate for review, for two reasons. First, because the rest of the

team will learn how to maintain it; second, it’s only ever been looked at by one person,

so nobody else has yet had a chance to catch any defects in it.

• Does the software implement a highly abstract or tricky algorithm? The more difficult the

algorithm, the more likely it is that a programmer introduced errors in its implementation.

• Is there an object, library, or API that is particularly difficult to work with? Working

with a nonintuitive interface causes many programmers to make mistakes.

• Was the code written by someone who is inexperienced or has not written that kind of

code before? Does it employ a new programming technique? Is it written in an unfamil-

iar language? A programmer who is doing something for the first time is most likely to

introduce errors.

• Is there an area of the code that will be especially catastrophic if there are defects? A

core tax accounting function is more important than the code that renders the splash

screen. Select code that must not fail so that more people can look at it—and will be

able to maintain it if it does have problems.

It is important to select a sample of code that an inspection team can review in about two

hours. The project manager should try to keep the meeting to two hours or less, to avoid

“meeting fatigue.”

Hold the Review Session

The team selection and preparation in a code review are similar to any other kind of

inspection. An inspection team of 3 to 10 people must be selected. Each of these people

must be technically capable of reading and understanding the code being reviewed. Before

the meeting, the moderator distributes the code sample to each inspector, who does indi-

vidual preparation exactly as in the inspection.

The main difference between a code review and any other kind of inspection is in the

review session. While the code review session is similar to the inspection meeting (see

“Page-by-page review” above), there are a few important differences.

In addition to the moderator, there is a code reader who reads the code aloud during the

meeting. The code reader can also be one of the inspectors; the only requirement is that

the reader must have enough technical expertise to understand the code. The purpose of

the reader is simply to keep the team’s place during the inspection; the team should have

already read the code and identified defects during their preparation. Since code is usually

organized in logical units or blocks, it is more useful for a reader to go through those,

rather than having the moderator go through the document page by page.

The reader starts at the beginning of the code sample and announces the first block or log-

ical unit. She does not literally read the commands in the code; she simply gives a brief

description (about one sentence) of the purpose of that block. If anyone (including the

R E V I E W S 89

reader) does not understand what the code does or disagrees with the interpretation, the

author of the code explains what it is the code is supposed to accomplish. Sometimes the

team can suggest a better, more self-explanatory way to accomplish the same thing; often

it is simply a matter of explaining the purpose of the code to the person who raised the

issue. If any inspectors found a defect in that block of code, the issue is raised and the team

either comes up with a fix on the spot or tags it as an open issue for the programmer to fix

later. The moderator then updates the inspection log, and the inspection continues until

the reader completes the code sample being inspected.

Another important difference between code reviews and document inspections is that the

code review is much more focused on detecting defects, and less on fixing them. This is

because many defects in documents can be corrected with one or two sentences, or with a

change in wording. Defects in the code can be much more involved, and there are often

many ways that they could be fixed. The discussion of each defect is longer in a code

review than it is during an inspection, and there are usually many open issues at the end

of the code review.

In the code review, the moderator needs to be especially careful not to let the meeting

turn into a problem-solving session. Programmers love to solve problems. It’s easy for

them to get caught up in a small detail and turn the meeting into an analysis of a minute

problem that covers just a few lines of code. However, long discussions like this will pre-

vent significant amounts of code from being reviewed. That’s not to say that these discus-

sions are not valuable—they just don’t belong in the code review meeting. If a discussion

looks like it will take more than three minutes or so, the moderator should stop the dis-

cussion and add it to the inspection log as an open issue. There should be few open issues,

however, because most code defects should be straightforward to describe and document

once they have been identified.

There are effective ways to modify the code during the review. Many inspectors have

found that it is very helpful to refactor the code during the review. By applying refactor-

ings on the spot, the team can make the code much more readable and identify additional

defects. (See Chapter 7 for more information on refactoring.)

After the inspection meeting, the code author performs the rework and closes the open

issues, and the moderator follows up with each of the inspectors and gains their approval.

Instead of getting formal sign-off with physical signatures, it is usually sufficient to indi-

cate the approval in the log comments when the changes are committed to the version

control system (see Chapter 7 for more information on version control).

There are several additional benefits for the code review. One is that people learn how

their teammates think about the code. A good way to encourage this is to switch off code

readers in each review, so every team member gets a chance to be a reader. Reading code

aloud and explaining it helps programmers think through problems. Every programmer

should be able to explain his ideas well; discussing code during a code review is good prac-

tice for that.

90 C H A P T E R F I V E

Another benefit is that people who know that their code may be inspected tend to write

more maintainable software. It’s very common for programmers to not include comments

or to write very terse, confusing code when they know that they are the only people who

will ever read it. But if a programmer knows that someone else will be looking at it, he

may put a lot of effort into making it readable. This can have enormous savings in mainte-

nance efforts down the road.

Code Review Checklist

The following attributes should be verified during a code review:

Clarity

Is the code clear and easy to understand?

Did the programmer unnecessarily obfuscate any part of it?

Can the code be refactored to make it clearer?

Maintainability

Will other programmers be able to maintain this code?

Is it well commented and documented properly?

Accuracy

Does the code accomplish what it is meant to do?

If an algorithm is being implemented, is it implemented correctly?

Reliability and Robustness

Is the code fault-tolerant? Is it error-tolerant?

Will it handle abnormal conditions or malformed input?

Does it fail gracefully if it encounters an unexpected condition?

Security

Is the code vulnerable to unauthorized access, malicious use, or modification?

Scalability

Could the code be a bottleneck that prevents the system from growing to accommodate

increased load, data, users, or input?

Reusability

Could this code be reused in other applications?

Can it be made more general?

Efficiency

Does the code make efficient use of memory, CPU cycles, bandwidth, or other system

resources?

Can it be optimized?

R E V I E W S 91

Pair Programming
Pair programming is a technique in which two programmers work simultaneously at a sin-

gle computer and continuously review each others’ work. Although many programmers

were introduced to pair programming as a part of Extreme Programming (see Chapter 12),

it is a practice that can be valuable in any development environment. Pair programming

improves the organization by ensuring that at least two programmers are able to maintain

any piece of the software. Pair programming also helps programmers’ professional devel-

opment, because they learn from each other.

Pair programming is like having a continuous code review, without the extra time or

effort of holding individual code reviews. It encourages a redundancy among the team

members, and everyone is cross-trained on various parts of the code. Junior people can

more quickly learn directly from senior people when they are paired together. While it

may seem that assigning two people to a single programming task could be inefficient, in

fact, productivity often increases. It takes somewhat less time to perform each task, as

there are often gaps where one person is “tapped out” and the other can take over. More

importantly, the resulting code is of very high quality, so there are far fewer mistakes to go

back and fix.

One useful benefit of pair programming is that people tend to write better code when they

know that someone else will be reading it. They cut fewer corners, spend more time mak-

ing the code readable, are more likely to include comments where necessary, and refactor

more often.

In pair programming, two programmers sit at one computer to write code. Sometimes

they share a single keyboard and mouse, although it is possible to get special hardware or

cables that allow each programmer to have his own. Generally, one programmer will take

control and write code, while the other watches and advises. But different pairs of people

may discover their own dynamic: for example, some pairs will take turns at the keyboard,

while others will designate one person as the typist (if one person types significantly faster

than the other).

It’s straightforward to implement pair programming in any development team—just

choose two programmers who are willing to give it a shot, and have them work together

at the same computer. However, it’s important to remember that, like any programming

technique, pair programming is a skill that improves with practice. Some benefits can be

realized almost immediately, but there is no substitute for years of experience. But, like

any other programming skill, the only way to get experience is to practice.

While efficient pair programming is a skill that requires practice and patience, there are

some useful tips that make its initial adoption easier. People will be less resistant to a

change if their first experience with a new technique is positive. One way to help guaran-

tee this is to pilot pair programming on a low-risk portion of code. The project manager

should choose one where the scope and requirements are well understood going into the

project, and where success is easily measured. Both members of the pair assigned to work

92 C H A P T E R F I V E

on it should be people who have done similar projects in the past. These circumstances

can provide an opportunity for an easy win, which in turn will increase the programmers’

confidence in the technique.

Some teams have found that pair programming works best for them if the pairs are con-

stantly rotated; this helps diffuse the shared knowledge throughout the organization. Any

two programmers can potentially make a well-functioning pair, no matter what their rela-

tive experience. Some people have found that it helps to choose pairs that include both a

senior person and a junior person. This will make it easier for the communication to fit

into an existing pattern (mentor and tutor, roles that both people are already used to—

although this is not necessarily how all senior-junior pairs will interact). Often, a junior

team member will ask a seemingly “naïve” question about the code that turns out to iden-

tify a serious problem. This is especially common with problems that the senior member

has been living with for so long that she no longer notices them. Sometimes, the extent of

a code problem only becomes clear when it is explained to somebody else.

Pair programming is not for everyone. It is difficult to implement pair programming in an

organization where the programmers do not share the same 9-to-5 (or 10-to-6) work

schedule. Some people do not work well in pairs, and some pairs do not work well

together. The project manager should not try to force pair programming on the team; it

helps to introduce the change slowly, and where it will meet the least resistance. Some

programmers will argue that assigning two people to one task is a waste of time, claiming

that two people can get twice as much work done if they work separately. While this may

seem true at first glance, the pair will introduce far fewer defects; it may require more

man-hours to do the programming, but it will reduce the amount of time spent on bug-

fixing and maintenance. However, this may not convince some stubborn programmers. In

this case, an effective way to introduce this technique is to begin with the people who are

more excited about the idea. Their success can help to convince the stragglers of the value

of pair programming.

N O T E
More information on pair programming can be found in Extreme Pro-

gramming Explained by Kent Beck (Addison Wesley, 1999).

Use Inspections to Manage Commitments
A successful project needs more than just a blanket agreement between team members.

It’s very easy for someone to “agree” to a document, only to turn around later and decide

that he didn’t fully understand what he was agreeing to. Instead, the project team needs

to reach a true consensus, where each person fully supports the document. The goal of an

inspection is to build consensus on the document by gaining a real commitment from

everyone who has read it. When a reviewer approves a document, he takes responsibility

for its contents, and if the document has defects, he shares some of the blame for missing

the mistake.

R E V I E W S 93

The best way to reach consensus among the inspection team is for each person to feel like

he or she made a real contribution to the document. The inspection meeting accomplishes

that by allowing each person to find problems in the document and help the rest of the

team find a solution to each problem. This is why it’s important for the team to go beyond

just pointing out the defects in the document and actually come up with replacement

wordings that fix the defects.

By the end of the meeting, nobody remembers that one person suggested this sentence,

and another suggested that one; everyone feels a sense of ownership because it was a real

group effort. That ownership means that each team member leaves the meeting with a

real commitment to the document. This can eliminate many of the conflicts that can cause

problems later on in the project.

Inspections are also important for gaining real, meaningful approval for a document.

When a document is not correct, that puts the team members in a very difficult situation.

Consider a stakeholder who is reading a vision and scope document, and who has a prob-

lem with some of the contents. She can’t just refuse to approve the document; that would

mean that she was personally holding up the project. But if she lets the document move

forward as is, that could cause serious problems later in the project. So the stakeholder

feels backed into a corner. She can’t approve the document as it stands, but she doesn’t

have the authority to make changes to it. Typically, people who are put in this situation

simply avoid reading the document, giving them a sort of “plausible deniability” that lets

them avoid blame when the project has problems later.

Inspections are a way out of this situation. The inspection team is given the responsibility

of approving the document. To accomplish that, each member is given the authority to

withhold approval until any text in the document that prevents them from approving it

has either been changed to meet their needs or has been explained to the approver’s satis-

faction. This allows the project to move forward.

Other kinds of reviews are also useful in managing commitments. Deskchecks are espe-

cially important for gathering consensus among people in the organization who do not

need to approve specific documents, but whose input is still very important.

Project teams are made up of people who all share a common goal: getting the software

project out the door. Stakeholders, users, engineers, and project managers all have this goal

in common. This means that each person should be willing to take on responsibility to make

sure that every document produced over the course of the software project is correct.

Diagnosing Review Problems
Many organizations rely on their testers (or, in worse cases, their users) to find the bulk of

the defects in the software they produce. When the defects are caused by simple coding

errors or typos, they are easy to correct. Unfortunately, very few defects are caused by

simple coding errors or typos. Most defects are introduced before a single line of code is

written. Sometimes a programmer misunderstands the design; at other times, the entire

94 C H A P T E R F I V E

team fails to take a stakeholder’s needs into account and fails to build a needed feature

into the software. Waiting until after the software is built to discover these problems

results in an enormous amount of work to fix defects that should have been caught before

a single line of code was written.

Problems Are Found Too Late

There are many problems that can be avoided by having the team adopt vision and scope

documents, project plans, software requirements specifications, and other project docu-

ments. But what happens when the team doesn’t catch an error in one of these docu-

ments until the software is built?

One of the most common causes of project failure is that requirements contain a defect

that is not caught until much later in the project. Trying to fix that defect after the soft-

ware is built can be so costly that it can destroy the project entirely. For example, suppose

that a team member writes a use case document to describe a critical feature. The docu-

ment is emailed around to the team, and everyone reads it. However, some of the readers

are very busy, so they only skim it and see that it looks about right. Others see problems,

but don’t want to embarrass the author by bringing them up. A few think that they found

very obscure problems and don’t want to embarrass the other readers who they think

would not have come up with the problem.

Some teams try to find defects by mailing documents around to the team, with no real

expectations of what the team is supposed to do with each document. After the author

mails the document out, usually nobody responds to the email for a few days. Responses

trickle in over the course of the following week. Some of them point out serious flaws, but

most of them do little more than point out typos and minor wording changes. In the

meantime, the designers start their work to avoid sitting around doing nothing. Eventu-

ally the user interface, architecture, and software are built. The product is passed down to

the QA team, who start testing the build. They haven’t been a part of the development of

the software at all, and have only been talking to the users and stakeholders, putting

together a test plan to ensure that the software does everything that they expect it to.

Within a few days, the QA team discovers a problem: there is a feature that does not work

the way the users need it to work.

When this happens, the entire project team is brought together in a meeting, and a split

quickly forms. The QA lead and stakeholder insist that the software is broken. The

requirements analyst, design lead, and programming lead insist that there is nothing

wrong. They finally start going through the documents and find that the software does,

indeed, meet all of the requirements laid out in the relevant use case. But the use case is

wrong—it does not describe what the users need the software to do. It’s clear to everyone

present that fixing the problem will be a major endeavor, and that the project will be

delayed for a very long time. The team built software that was solid, well-built, and func-

tional—but they built the wrong software.

R E V I E W S 95

If the project team had inspected the use cases, this could have been avoided. Everyone

with a stake in the project—including QA team members—would be invited to the inspec-

tion meetings, and each inspector would have a better idea of what to look for during the

inspection process. It costs the same to build the right software as it does to build the

wrong software. A few hours of searching for and fixing any problems with the use case

document would have saved the team weeks or months of rework.

Big, Useless Meetings

Having a project fail due to a problem in a document that isn’t caught until late in the

project is traumatic for a team. It’s especially bad for the person who wrote the document.

Once a team experiences this problem, everyone feels especially motivated to do some-

thing about it. In many cases, the solution that seems most obvious to the team and the

project manager is to distribute the responsibility for creating the document. The last

project was a mess because the team missed something; there’s no way that they will let

this happen again.

The project manager calls a meeting to get everyone together at the very beginning of the

project. He takes no chances, inviting everyone who might possibly have some small input

into the project and impressing upon everyone just how important the meeting is. An

entire afternoon is blocked out for a standing-room-only session that’s supposed to let

everybody have a voice in the design of the document. Unfortunately, it ends up having

the opposite effect.

Everyone has something to say, and nobody wants to let any stone go unturned. The big

meeting seemed like a good idea on paper, but it quickly gets bogged down in details that

only one or two people care about. The meeting goes nowhere. Nobody knows what they

are supposed to do, and there’s no real leadership or direction. Long after meeting fatigue

sets in, no progress has been made. Stakeholders are arguing about the minute details of

the day-to-day business of the organization, while designers are caught up in potential

design problems, programmers can’t decide on which tools to use, and, through all of this,

nothing is written down. The team adjourns the meeting, having made no progress. After

a few tedious marathon meetings, the project team gets sick of waiting and decides to do

things the way that they’ve always been done.

Had the team held an inspection meeting, a deskcheck, or a walkthrough, everyone would

have understood his or her role. The reviewers would have been more carefully selected.

A single lead author would have had the responsibility of generating the document. Each

reviewer would have had a well-defined role, reading the document and bringing up spe-

cific defects. Each defect would have been discussed by people with some knowledge to

address it, and the responsibility for finding the errors would rest with the people capable

of fixing them.

The Indispensable “Hero”

Sometimes a programming team has one “hero” who seems to stand out above everyone

else. If a technical problem comes up that nobody can solve, and it looks like the deadline

96 C H A P T E R F I V E

will be blown, the hero will often take the problem home on Friday night, work all week-

end, and come in on Monday morning with a solution.

It seems like the hero is good for the team. But there are some serious downsides to his

heroics. He’s a constant scheduling problem for the project manager, because it seems that

no project can be completed without him. He’s constantly over-allocated, and there are

entire programming teams who cannot move forward because they are waiting for him to

finish a project. Meanwhile, he is constantly working 70-hour weeks, and the entire team

is afraid that he will burn out or leave the organization.

In some cases, the hero is inadvertently keeping the rest of the team from advancing,

either professionally or in the organization. It seems that the hero wrote the core of every

code library. Only he knows the details of critical architecture pieces. The hero is tired of

people talking about him getting hit by a bus, which seems to come up at least once in

every architecture or code planning meeting.

The most difficult problem to deal with in this situation is maintenance. Because of his

peculiar over-allocation problem, there is an increasing amount of code that only the hero

is able to maintain. This is usually because he was called in to write the most difficult part

of the code. Sometimes it is algorithmically difficult, and he’s the only one with enough

experience to do it. At other times, the coding task relies on a library that he wrote and

that only he knows how to use. In either of these cases, if that code needs to be updated,

the hero is the only person in the organization who is familiar with it.

Code reviews and pair programming can help alleviate the dependence on the hero.

When he writes a piece of especially tricky code, he can hold a code review. If a group of

programmers inspects that code, they will be able to maintain his code. In future projects,

they’ll be able to draw on what they learned in the review session. This will help the

entire team’s professional development. What’s more, the hero is often not much more

advanced than everyone around him; he may just know a few tricks that the rest of the

team can begin to pick up. Pair programming can be especially helpful if the hero is

teamed up with another senior programmer. Sometimes the “hero” status is merely a mat-

ter of perception—everyone just “knows” that he’s the best programmer around. Pair pro-

gramming can help everyone on the team realize that they have other people who are just

as valuable. For the true hero, sharing his skills with others will help him earn real respect

from the team. Team members will be able to continue to learn from his experience, and

he will be able to share and teach the team. The team, in turn, will come to see him as a

role model and a leader, instead of just a hero who swoops in to fix their problems.

