

Reviews

Review What?

Review Everything

 Vision & Scope Document

 Requirements Specification

 Project Plan

 Design - High Level and Detailed Design

 Code

 Test Plan

 Documentation

Why Review?

1. Save time.

2. Save money.

3. Gain approval & increase sense of shared ownership.

4. Reviews find more defects than testing.

5. Share knowledge.

6. More ideas make better work products.

Kinds of Reviews

1. Inspection

2. Code Review - Inspection of Code

3. Walk-through

4. Desk check

5. Self-review

Formal

Informal

Which Review to Use?

Product Technical Drivers - Complexity
 Low Average High
Software Requirements Walkthrough Inspection Inspection
Design Desk check Walkthrough Inspection
Software Code and Unit Test Desk check Walkthrough Inspection
Qualification Test Desk check Walkthrough Inspection
User/Operator Manuals Desk check Desk check Walkthrough
Support Manuals Desk check Desk check Walkthrough
Software Documents, e.g. Version
Description Document (VDD),
Software Product Specification
(SPS), Software Version
Description (SVD)

Desk check Walkthrough Walkthrough

Planning Documents Walkthrough Walkthrough Inspection
Process Documents Desk check Walkthrough Inspection

Source: Prof. Claude Laporte, U. of Quebec, Dept of Software and IT Engineering

Inspection

The most formal kind of review.

Purpose: find defects.

How To:

1. Choose work product to inspect.

2. Choose 4-5 people, including a moderator

3. Prepare: Everyone reads the work product in advance
and notes suspected defects.

4. Inspection meeting: confirm defects & log them

 Inspections may proposal correction (e.g. words in
document)

5. Rework: author fixes defects from inspection log

Inspection Team

Author of document or work product

Project manager - for project documents

Representative of groups affected by the document, e.g.
developers, management,

Inspectors should

 be familiar enough with project to understand
problems and propose changes

 provide different perspectives on work product

Inspection Meeting

Moderator guides inspectors through work product.

Ask inspectors for defects.

Other inspectors (and author) confirm each defect, or
explain why they disagree.

Inspectors agree on a fix (for document) or leave it to
author to fix (code).

Record each defect in a written log.

Purpose is not for author to teach or explain.

After the Inspection

Rework: author fixes the work product.

Follow-up: inspectors individually review the revised work
and approve or not approve it.

Acceptance: once all inspectors approve, the work
product is accepted.

Inspection is NOT...

 Review of style
 Attempt to improve or optimize design*
 Evaluation of the author
 Subjective evaluation of quality

*Infosys: inspectors use a separate form to record
comments, offer insights and ideas.

Is Inspection Worth the Time?

Inspection involving 5 people takes 10-20 man-hours,
about half the time is preparation.

Inspection finds 5 - 10 defects, on average.

Source: Ron Radice, ‘Software Inspections: Past, Present, and
Future.’, Software Technology Conference, Salt Lake City, Utah, May, 2001

Activity

Defect Injection and Detection

0

5

10

15

20

25

START REQ HLD LLD CODE UT IT ST SHIP

D
e

fe
c

ts
/K

L
O

C

 Injected
 Detected without Inspections

Gap

Detected with Inspections
New Gap

Cost/Benefit of Inspections

 Req. Design Code Test Post-Release

R
ew

o
rk

 E
ff

o
rt

Before Review/Inspection
After Implemented Review/Inspection

8%

1%

12%

3%

19%

4%

Formal Review/Inspection increased design effort by 4%
 Decreased rework effort by 31%

Reduce 31%
in rework

Source: Vu, J., ‘Software Process Improvement Journey’, 8th Software
Engineering Process Group Conference San Jose, California March, 1997.

Conclusion

Inspection Saves Time & Money

How Much Time Does it Take?

Inspection Type Checking Rate Logging Rate

 Architecture 2 – 3 Pages Per Hr (PPH) 2 - 3 PPH

Requirements 2 - 3 PPH 2 - 3 PPH

Preliminary Design 3 – 4 PPH 3 – 4 PPH

Detailed Design 3 – 4 PPH 3 – 4 PPH

Source Code 100 – 200 LOC Per Hour
(LPH)

100 – 200 LPH

Test Plan 5 – 7 PPH 5 – 7 PPH

Fixes and Changes 50 – 75 LPH 50 – 75 LPH

User Documentation 8 – 20 PPH 8 – 20 PPH

Source: Radice, ‘High Quality Low Cost Software Inspections’, 2002.

Code Review

An inspection of code.

Similar to Inspection but more time is spent on
alternatives and qualitative issues.

Before Review:

 - choose the code to review (you can't review
everything this way) - see Stellman & Greene

 - choose moderator, reader, and inspectors

 - choose a date/time and duration (60-90 minutes)

 - everyone reviews code individually and makes notes
of issues they find (paper or online notes)

Code Review Meeting

During Review:

- the "reader" walks through the code aloud -- by section
(class, method, code block), not literally reading code.

- inspectors:
 ask about anything they don't understand
 question correctness of code
 suggest "better" or more self-explanatory

alternatives

- moderator: keep review on track. Don't get bogged
down discussing particular design or code issues.

- recorder: writes down issues for follow-up

Code Review Follow-up

After Review:

- author addresses all issues, either revise code or
explain to reviewer why he things no rework is needed

- do it promptly!

- gain agreement to close all issues

Code Review vs. Other Inspections

Code Reviews result in more open issues.

May refactor the code during the meeting... if it makes it
easier to review.

More time spent proposing alternatives or improvements.

Follow-up and consensus can be done online.

Walk-through

Goals
 find defects
 solicit feedback and ideas, get other perspectives
 discover alternative solutions
 gain shared understanding of artifacts
 improve everyone's knowledge & skill

Author "walks" a small group through a work product.

More informal than code review, and led by author.

Procedure is more flexible than inspections.

Often applied to: code, use cases, software design

Desk Check

Purpose

Individually review of code by another developer.

Usually done individually, with follow up discussion.

Procedure

A developer asks another developer to review his work.

The reviewer (at his own desk) checks the work and
reports defects, questions, and suggestions for
alternatives or improvement.

Git Pull Request

Purpose

 Request review of work before incorporating it into a main
"dev" branch or master branch.

A kind of "desk check" using Github or Bitbucket.

Tutorial: https://yangsu.github.io/pull-request-tutorial/

Guide: https://help.github.com/articles/using-pull-requests/

Example (JQuery):

https://github.com/jquery/jquery/pull/1051#discussion-diff-
2287441

Self-Review

Always review your own work

Obvious, but often not done!

How to:

take a break before review. This is required.

decide what criteria you are going to use (what are
you checking for?)

allocate sufficient time

record DEFECTS you find

Scripts and Checklists

Scripts and Checklists save time & make results more
consistent.

How Save time?

 - don't re-discover what you did before

 - focus on the creative, not the routine

Script - describe the activity, its purpose, desired result,
important steps, and "exit criteria".

Checklist - concise list of particular things to do or
inspect

Script

Purpose: Find defects in code

Entry criteria: Code specification and design

 Source code with tests that all pass.

 Goal for Code Review: review why?

 Checklist

Steps: 1.

 2.

 3.

Exit criteria: source code completely reviewed.

 all defects, suggestions, and open issues
recorded

PSP Code Review Script

Checklist

Reviews should use a checklist.

Contents of checklist depend on kind of thing being
inspected!

Self-review and desk check are more effective if you
use a checklist.

 RS 1 (TESTABLE) – All requirements are verifiable (objectively)

 RS 2 (TRACEABLE) – All requirements must be traceable to a
systems specification, contractual/proposal clause.

 RS 3 (UNIQUE) – Requirements must be stated only once

 RS 4 (ELEMENTARY) – Requirements must be broken into their
most elementary form

 RS 5 (HIGH LEVEL) – Requirement must be stated in terms of
final need, not perceived means (solutions)

 RS 6 (QUALITY) – Quality attributes have been defined.

 RS 7 (HARDWARE) – Is hardware environment is completely
defined (if applicable).

 RS 8 (SOLID) – Requirements are a solid base for design

Example Checklist for Requirements Specification
(RS)

Source: Gilb, T., Graham, D., ‘Software Inspection’, Addison Wesley, 1993.

 CC1 (COMPLETE) - Verify that the code covers all the design.
 CC2 (INCLUDES) - Verify that includes are complete.
 CC3 (INITIALIZATION) - Check variable and parameter initialization.
 CC4 (CALLS) - Check function call formats
 CC5 (NAMES) - Check name spelling and use
 CC6 (STRINGS) Check that all strings are ...
 CC7 (POINTERS) - Check that:

 Pointers are initialized to NULL,
 Pointers are deleted only after new, and
 New pointers always deleted after use.

 CC8 (OUTPUT FORMAT) - Check the output format:
 Line stepping is proper.
 Spacing is proper.

 CC9 (PAIRS) - Ensure the { } are proper and matched.
 CC10 (LOGIC OPERATORS) - Verify that the proper use of ==, =, //, and so on.

Example Checklist for C++ Code (CC)

Adapted from: Humphrey, W., ‘Introduction to the Personal Software Process’, Addison Wesley, 1997.

Another Code Inspection checklist

Fault class Inspection check
Data faults Are all program variables initialised before their values

are used?
Have all constants been named?
Should the lower bound of arrays be 0, 1, or something
else?
Should the upper bound of arrays be equal to the size of
the array or Size -1?
If character strings are used, is a delimiter explicitly
assigned?

Control faults For each conditional statement, is the condition correct?
Is each loop certain to terminate?
Are compound statements correctly bracketed?
In case statements, are all possible cases accounted for?

Input/output faults Are all input variables used?
Are all output variables assigned a value before they are
output?

Interface faults Do all function and procedure calls have the correct
number of parameters?
Do formal and actual parameter types match?
Are the parameters in the right order?
If components access shared memory, do they have the
same model of the shared memory structure?

Storage management
faults

If a linked structure is modified, have all links been
correctly reassigned?
If dynamic storage is used, has space been allocated
correctly?
Is space explicitly de-allocated after it is no longer
required?

Exception
management faults

Have all possible error conditions been taken into
account?

PSP Checklist

This is worth studying.

He divides items into categories.

Humphrey's advise:

1. Keep your checklist simple and short.

2. Checklist must be complete.

3. Tailor to the programming languages you use.

4. Designed to address the kind of defects you inject.

Example Checklist for Java

Defect Type Description

variable name are names descriptive? correct case?

comments
Descriptive Javadoc method comments?
In method: is complex logic explained?

exception handling
Are all reasonable exceptions caught and
handled, or explicitly allowed to be thrown?

logging Are security or unusual events being logged?

null pointers
Are any possible null values used?
(Does NullObject pattern apply?)

floating point types double used in place of BigDecimal?

output formats Are printed values always explicitly formatted?

Another Code Review Checklist

Applied Software Project Management, page 90.

1. parts of that list are too broad or vague for your project.

2. some items are outside the usual scope of Inspection.

For example:

Efficiency

Reusability (this can be a waste of time)

Summary

1. Review Everything - not just code

2. Choose an appropriate level of review

3. Reviews must produce a written result - not just talk
– result is online where everyone can see it
– open issues for specific items

4. Follow up & close all issues, answer all questions

5. Use tools to automate routine stuff (style checking ...)

6. Scripts and checklists make reviews more effective

Questions

1. Look at the PSP Code Review Checklist.

what categories do not apply to Python?

what categories can be done by automated tools?

References

Stellman & Greene, Applied Software Project
Management, chapter 5 on Reviews.

- chapter 5 is available online.

Ship It! Item 13 - Review all Code

Practical advise for code reviews.
 review only a small amount of code
 one or two reviewers at most
 review very frequently, often several times per day

References

Karl Weigers, Peer Reviews in Software - A
Practical Guide. Considered the "bible" on peer
reviews.

Karl Weigers, Improving Quality Through
Software Inspections article online.

https://www.processimpact.com/articles/inspects.pdf

Tom Gilb, Software Inspection.

R. Radice, High Quality Low Cost Software
Inspections.

Acknowlegement

Some of these slides are from a workshop at
NECTEC by Prof. Claude Leporte, U. of Quebec.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

