

Persistence and
Object-Relational Mapping

James Brucker

Goal

 Applications need to save data to persistent storage.

 Persistent storage can be database, directory service,
plain files, spreadsheet, cloud service, ...

Application

save, update, find
& retrieve, delete

Persistent Storage

user info
scores
products
orders
sales
payments
votes

Abstraction - just do it

 We want to abstract (hide) details of how data is being
saved and retrieved.

 The application only knows what it wants done (save,
retrieve, update), not how.

Application

Storage

Persistence
find()
delete()
save()
update()

Terminology

Persistence - prolonged existence of something.
In software, persistence refers to preserving
the existence of data after program stops.

Entity - something with a distinct, independent
existence.

Software entity: an object that can exist
(persist) from one program execution to the
next.

Saving & Recreating Objects

An object's attributes are similar to the fields in a table.

LOCATIONS table

id (PK) name address

101 Kasetsart 50 Ngamwongwang Rd, ...

102 Pizza Hut 44 Pahonyotin Rd, Jatujak,..

Location

id: int

name: String

address: String

Save object as row in a table, retrieve
row of data and (re)create an object

Mapping an Object

LOCATIONS table

id name address

101 Kasetsart University 50 Ngamwongwang ...

103 Seacon Square 120 Srinakarin Rd ...

ku: Location

id = 101

name = "Kasetsart University"

address = "50 Ngamwongwang ..."

object diagram

save()

Object-Relational Mapping

Purpose

 save an object to a database table(s)

 recreate object(s) using data from a database

 save and recreate associations between objects

Design Goals

 separate the O-R mapping service from our application

 abstract details of how its done -- app just calls save()

 preserve identity - don't create 2 copies of same object

 localize the impact of change in the database.

An Example

An Event Manager application with these classes:

Object-Relational Mapping details

Each entity class needs an id field that is PK in table.

LOCATIONS

PK id INTEGER

 name VARCHAR(80)

 address VARCHAR(160)

Location

id: int

name: String

address: String

Class

should have an
identifier attribute

Database Table

identifier is usually
the primary key of
table

Object Mapper

Object Mapper

save objects to
rows in tables,
retains uniqueness

Code for ORM

ku = Location("Kasetsart University",

 "50 Ngamwongwang Road, Bangkok");

save it!

object_mapper.save(ku)

object_mapper assigns an id to object

print(ku.id)

101

Issues:

• mapper should choose a unique ID for each saved object

• what if same data (Kasetsart University) is already in the
table?

Finding and Retrieving an Object

find by id (only one match possible)

ku1 = object_mapper.find(id=101)

find by name (may have many matches)

list = object_mapper.find(name="Kasetsart University")

Does object_mapper always return the same object?

 ku1 = object_mapper.find(id=101)

 ku2 = object_mapper.find(id=101)

 ku1 == ku2 => true or false?

Essential Operations: CRUD

Most common persistence operations are:

Create save a new object to the database

Retrieve an object (or objects) from the database

Update data for an object already in database

Delete object data from the database

Which one is most Complex?

Of the 4 CRUD operations, which do you think is
the most complex to provide?

Create save a new object to the database

Retrieve an object from the database

Update data for an object already in database

Delete object data from the database

Providing CRUD

Simple:

 Create save(object)

 Update update(object) or save(object)

 Delete delete(object)

Complex:

 Retrieve one object by id = get(id)

 Retrieve all objects

 Retrieve using a query expression:
address contains "Bangkok" or population > 1000000

 Retrieve first 10 objects, sorted by date

Try ORM in Django

cmd> python manage.py shell

>>> from polls.models import Question

>>> q = Question(question_text="Understand ORM?")

>>> q.pub_date = datetime.now()

>>> q.id

(nothing is printed)

>>> q.save()

>>> q.id

6

>>> Question.objects.all()

<QuerySet: [..., <Question: Understand ORM?>,...

Try it in Django

Change something, then update data in database

>>> q.question_text = "Next question?"

>>> q.save()

Did it update the question in database?

>>> Question.objects.get(id=6)

<Question: Next Question?>

Can we delete it from database?

>>> q.delete()

>>> Question.objects.get(id=6)

DoesNotExist: Question matching query does not

 exist.

Design of a Persistence Service

 2 Design Patterns for a persistence service

Data Access Objects - define a separate class that is
responsible for persistence services.
Your app calls the DAO class to save/retrieve objects.

Active Object Pattern - entity classes perform CRUD
operations themselves.
– Behavior is defined in a superclass.
– Each entity is a subclass and inherits the CRUD

operations, so no new code is needed.

Which Design does Django Use?

Data Access Objects - define a separate class that is
responsible for saving & recreating objects.
Your app calls the DAO class to save/retrieve objects.

Active Object Pattern - entity classes perform CRUD
operations themselves.
– Behavior is defined in a superclass.
– Each entity is a subclass and inherits the CRUD

operations, so no new code is needed.

Data Access Object Pattern

A separate class provides persistence services.
 Append "Dao" to the class name, e.g. EventDao.

EventDao

find(id): Event

query(expression): Event[*]

save(event)

update(event)

delete(event)

Your App

<<entity>>

Event

uses

Active Object Pattern
 A super-class provides persistence operations.

 Entity classes are subclasses & inherit the behavior.

 Entity saves itself.

 Django automatically adds
id and objects attributes.

Model
pk

delete(self)

save(self)

Question
id

objects: Manager

question_text

choice_set

What does the
underline mean?

SQL Data Types

Each field in a database table has a fixed data type.

But SQL data types are not the same as Python or Java
data types.

CHAR(20), CHARACTER(20) fixed length string

VARCHAR(200) variable length string

BOOLEAN 0 = false, x = true

SMALLINT 2-byte integer

INT 4-byte integer

FLOAT 8-byte floating pt (double)

DECIMAL(n,p) stored in decimal (base 10) format

Mapping Data Types

Ambiguity in converting data type from Python (or Java)
to SQL data type.

Example: how to save a Python str variable?

name = "Bird"

Mapping dates and times is even more ambiguous!

CHAR(4)
CHAR(255)
VARCHAR(80)
TEXT

?

Django: programmer must specify

class Person(django.db.models.Model):

 name = models.CharField(max_length=80)

 birthday = models.DateField(auto_now=True)

 email = models.EmailField(max_length=254)

 thai_id = models.IntegerField(max_length=13,

 unique=True)

class BankAccount(django.db.models.Model):

 balance = models.DecimalField(decimal_places=2)

 owner = models.ForeignKey('Person')

Persistent fields in model classes must use model data
types. Field sizes can be specified or use default size.

How to Save Associations?

Objects have associations (references) to other objects.

How can we save associations?

An Event has a Location:

Event

id: int

name: String

date: DateTime

location: Location

Location

id: int

name: String

address: String

1*

O-R Mapping of n-to-1 Associations

Event

id: int

name: String

date: DateTime

location: Location

Location

id: int

name: String

address: String

1*

O-R Mapping of n-to-1 Associations

Event

id: int

name: String

date: DateTime

location: Location

LOCATIONS

PK id INT
 name VARCHAR
 address VARCHAR

Location

id: int

name: String

address: String

EVENTS

PK id INT
 name VARCHAR
 date DATETIME
FK location_id INT

The ORM converts a many-to-1
association to a foreign key relation

1*

n-to-1 association in Django

class Event(models.Model):

 name = models.CharField('name',max_length=80)

 date = models.DateTimeField('date')

 location = models.ForeignKey(Location)

You specify only the related class (Location),

not the name of field in the database.

Save What?

event = Event("BarCamp 2019")

ku = Location("Kasetsart University", "...")

Yeah! Bar Camp is coming to KU!

event.set_location(ku)

event.set_date(datetime.date(2019, 11, 25))

save the event

object_mapper.save(event)

Did object mapper save the location, too?

Or do we have to save location ourselves?

Fetching an Event

Retrieve the event

event2 = object_mapper.find(name="BarCamp 2019")

object mapper finds the event...

print(event2.name)

"BarCamp 2019"

did it recreate the location, too?

print(event2.location.name)

???

When we retrieve an event,

does the ORM retrieve the location object, too?

Cascading

When you save, update, delete an object in database...

 are associated objects also saved/updated/deleted?

e: Event

Location

EVENTS
table

LOCATIONS
table

save(e)

?

Cascading

Cascading means that an operation on one object should
propagate (or cascade) to related objects.

Cascade = true: when you save an Event, save its
Location, too (if necessary).

Cascade = false: when you save an Event, don't save its
Location. Programming should save Location first so
that Location has an id.

Frameworks Provide Cascading

In JPA, using annotations:

@Entity
class Event {

 @OneToMany(mappedBy="event", cascade=PERSIST)
 private List<Person> attendees;

NONE
PERSIST
REFRESH
REMOVE
ALL

Does Django do cascading save?

>>> c1 = Choice(choice_text="First Choice")

>>> q = Question(question_text="What's your choice?")

>>> q.choice_set.add(c1)

TraceBack...

ValueError: <Choice: First Choice> isn't saved.

Try it with the polls app:

Django wants you to save associated objects yourself.

Django Cascading Delete

class Choice(models.Model):

 """A possible answer to a poll Question"""

 choice_text = models.CharField(max_length=80)

 question = models.ForeignKey(Question,

 on_delete=models.CASCADE)

Specify that question.delete() should cascade

When you delete a question, all it's choices are deleted,
too.

Other Kinds of Associations

There are other cases that ORM must handle:

- 1-to-many and many-to-many associations

- object containing an ordered collection, such as List.

Django invisibly handles all these.

For other ORM frameworks like SQLAlchemy (Python) or
JPA (Java) it helps to understand how framework
handles associations.
Especially cascading save/delete and lazy or eager
fetching.

Django Query Methods

Model.objects provides many query methods and a simple
query syntax.

Django has several built-in methods to compute sum, average,
min, max, etc. for a QuerySet.

To use Django effectively, you need to know how to
use the query methods.

Making Queries in Django

https://docs.djangoproject.com/en/3.1/topics/db/
queries/

Example of a Dumb Query

questions = Question.objects.all()

Create a list of questions about "programming"

qlist = [q for q in questions

 if "programming" in q.question_text]

Find all poll questions containing the word "programming"

Why is this inefficient?

Python Quiz:
 what is [q for q in questions if ...] called?

Smarter Query

questions = Question.objects.filter(

 question_text__icontains='programming')

questions is a QuerySet. Convert to a list

qlist = list(questions)

Let the database filter results for you:

Why is this more efficient?

 You don't retrieve lots of data that you don't want.

 You don't create objects that you don't need.

Find questions with pub_date >= 1 Jan 2020
Question.objects.filter(
 pub_date__gte=datetime.date(2020,1,1))

Learn More

Making Queries in Django.

https://docs.djangoproject.com/en/3.1/topics/db/queries/

* You don't need the URL, of course -- you already have
the Django documentation on your own computer,
right?

Lazy Instantiation

Another import ORM property.

Meaning is "don't create objects until you need them".

Django QuerySet uses this.

The Django docs describe lazy instantiation.

Persistence Frameworks

SQLAlchemy - "the database toolkit for Python"
 The most popular ORM framework for Python
 Excellent documentation

EclipseLink - reference implementation of the Java
Persistence API (JPA) standard for Java

ORMLite - easy to use Java ORM framework.
 Has it's own API + provides JPA API.
 Excellent documentation

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

