

Django Review

*args and **kwargs

A Python function can accept arguments without
specifying the actual argument names.

def fun(*args, **kwargs):
 print("Positional arguments:")
 for x in args:
 print(x)
 print("Named arguments:")
 for key in kwargs:
 print(f"{key} =", kwargs[key])
fun(5, "second", today="5/9/2023", size=10)

*args contains positional arguments.
**kwargs is a dictionary of named arguments (key word args)
and values. The names can be anything.

*args and **kwargs

The help for many Django methods looks like this:

Question.objects.create(*args, **kwargs)

poll = Question.objects.create(
 name="Who will be next U.S. president?",
 pub_date=timezone.now()
)

this means the create() method accepts any arguments,
such as:

**kwargs must be the last parameter

 It should be the last parameter in a function signature.

def myfun(x, **kwargs):
 print("x=", x) # required parameter
 print("Optional arguments:")
 for key in kwargs:
 print(key, "=", kwargs[key])

myfun("hi", id=219241, name="ISP", size=46)

Django Page Templates

In a template, you put variables inside {{ ... }}

templates/polls/details.html:

<p>

Q{{question.id}} is "{{question.question_text}}"

</p>

<!-- a template can invoke a method, too -->

{{question.was_published_recently}}

 Q1 is "What is your favorite food?"

 True

Rendering a Template
A "rendering engine" processes the template.

render(request, template, context)

template
.html

Base
template

Rendering
Engine

includes

process

HTML Page
created from
template &

context data

{ name: value,
 name2: value2,
 ...
}

data values

creates

Python code for rendering

In a view method:

from django.template import loader

template =
 loader.get_template('polls/details.html')

context = key-values to use in template

context = {'question': question, ...}

html = template.render(context, request)

return HttpResponse(html)

Shortcut for rendering

from django.shortcuts import render

context = {'question': question, ...}

render returns an HttpResponse object

return render(request,

 'template.html', context)

Template can access request data

A template can also access vars from the request.

{% if user.is_authenticated %}

 <p>Welcome, {{ user.get_username }}.</p>

{% else %}

 <p>Welcome, web surfer.</p>

{% endif %}

user refers to request.user

user.get_username refers to
request.user.get_username()

Code Should be Easy to Read

Instead of:
 return render(request,'template.html',

 {'question': "who are you?", ...})

add an explanatory variable

 context = {'question': "who are you?"}

 return render(request, 'template.html',

 context)

In a "view" what is request?
A Django "view" function looks like this:

from django.http import HttpRequest,
 HttpResponse
from django.template import loader

def detail(request: HttpRequest, question_id):
 questions = Question.objects.all()[0:10]
 context = {'question_list':questions}
 template = \
 loader.get_template('some_file')

 return HttpResponse(
 template.render(context, request))

What is HttpResponse?
What does HttpResponse represent?

from django.http import HttpResponse
from django.template import loader

def detail(request, question_id):
 questions = Question.objects.all()[0:10]
 context = {'question_list':questions}
 template = \
 loader.get_template('some_file')

 return HttpResponse(
 template.render(context, request))

URL Dispatching
Each "app" can have a urls.py to match request URLs

and dispatch them to a "view".

from django.urls import path

app_name is used to define a namespace
(used for "reverse mapping")
app_name = 'polls'

url_patterns = [
 path('', views.index, name='index'),
 path('<int:question_id>/',
 views.detail, name='detail'),
 path('<int:question_id>/vote/',
 views.vote, name='vote'),
]

Dispatch these URLs

Which view would handle each of these requests?

1) http://localhost:8000/polls/

2) http://localhost:8000/polls/4/

3) http://localhost:8000/polls/8/vote?username=nok

4) http://localhost:8000/polls/8/vote/summary

URL mapping for /polls/ app
url_patterns = [
 path('', views.index, name='index'),
 path('<int:question_id>/',
 views.detail, name='detail'),
 path('<int:question_id>/vote/',
 views.vote, name='voting'),
]

Mapping from View to URL

Inside html template, we want to insert a URL of a view.

Example: add a link to the polls index page.

How to "build" a URL inside a template?

BAD TEMPLATE CODE:
Back to Polls index

GOOD TEMPLATE CODE:

Back to Polls index

>> Notice that {%...%} is processed even inside "..."

Why is the 2nd code better than the 1st code?

app_name view name

Mapping from View to URL

If a view URL requires parameters, include them in the
{% url %} code.

<!-- question details template -->

 Vote for Poll 4

app_name view name

Reverse Dispatch

Sometimes a view controller wants to redirect the user to
a different URL.

from django.http import HttpResponseRedirect

def vote(request, question_id):
 question = Question.objects.get(id=question_id)
 // TODO save the vote for this question
 ...
 // Show all votes for this question
 _____Redirect to polls/{id}/results_________
 return ???

How to redirect the browser to this page?

reverse() for Reverse Dispatch

Redirect uses info from the urls.py files to construct the
URL the user should go to.

from django.http import HttpResponseRedirect

def vote(request,question_id):
 q = Question.objects.get(id=question_id)
 ## TODO get user's choice and add +1 to votes
 ...
 # Redirect browser to page of vote results
 HttpResponseRedirect(
 reverse('polls:results',args=(q.id,)))

Get the URL that matches the named route

Thorough Testing is Needed!

Python code is interpretted.

There is no compiler to catch errors (as in Java).
So, you need to test every path of execution.

 NameError at /polls/1/vote/

 name 'reverse' is not defined

Programmer forgot (in views.py):
 from django.urls import reverse

but this error is not detected until reverse() is
encountered at run-time.

All Frameworks must do this

Most web apps need a way to:

1. Include links to other app URLs in an HTML page

 - Amazon products page has links to each product

2. Redirect user to another page in our app

 - After add item to cart, redirect to view_cart page.

Issue:

How to inject the correct URLs, without hardcoding them?

Django's Solution

Most web apps need a way to:

1. Include link to other URLs in an HTML template

 {% url 'app_name:view_name' args %}

2. Redirect user to another page in a view

 HttpResponseRedirect(

 reverse('app_name:view_name',
 args=(...)))

Rationale:

Make "apps" reusable by providing a naming of URL
mappings at the app level, e.g. "polls:results".

GET and POST

GET is used to request a web resource, such as a web
page.

GET /polls/1/

What is POST used for?

(Semantic meaning of POST)

1. Send data to the application, such as from a form.

Your name: <input type="text" name="username" />

<p>some text</p>

2. To create a resource on the server.

One view for both GET and POST

One view can handle both.

Use request.method to determine which method.

def detail(request, question_id):
 question = Question.objects.get(id=question_id)

 if request.method == 'GET':
 # render and return the details template

 elif request.method == 'POST':
 # handle user's vote
 choice = request.POST['choice']

 # after a POST, always redirect somewhere
 return redirect('polls:results', args=(...))

Exploring Models

Use Django to start an interactive Python shell.

This is described in Tutorial part 2.

python manage.py shell [-i python]

>>> from polls.models import Question, Choice
>>> q = Question.objects.get(id=1)
>>> q.question_text
"What is your favorite programming language?"

>>> choices = q.choice_set.all()

You should know how to use the Django shell.

Domain Model

A model of the concepts and objects that are important
to your "model" for the "domain" of your application.

"Domain Model" for KU Polls includes:

Question
Choice
votes

KU Polls

Try out Persistence
Try persistence operations: save(), get(), delete()

>>> c = Choice(choice_text = "Fortran")
>>> c.votes = 1
Foreign Key. You have to find this separately.
>>> c.question_id = 1
>>> c.save()

>>> for choice in q.choice_set.all():
... print(choice)

Now the output includes "Fortran"

TODO: delete "Pascal" from poll. First, find it
pascal = q.choice_set.get(choice_text="Pascal")
pascal.delete()

Persistence Operations: CRUD

All Persistence Frameworks provide a way to...

 Create (save) an entity to the database

 Retrieve an object, by id or by field value (query)

 retrieve all objects

 Update object data in database

 Delete an entity (object) from database

How does Django do these?

Testing

Django Unit Tests extend TestCase class.

public class QuestionModelTest(TestCase):

 def test_create_question(self):

 question = Question(question_text="this is a test")

 self.assert

Wrong Name!
In Tutorial, name is "QuestionModelTests".

It should be "xxxTest" (no "s")!

Don't use plural for your test classes.

What is a django.test.TestCase ?

>>> from django.test import TestCase

>>> help(TestCase)

class TestCase(TransactionTestCase)

 ...

 Method resolution order:

 TestCase

 TransactionTestCase

 SimpleTestCase

 unittest.case.TestCase

 builtins.object

Running Tests

cmd> python manage.py test polls

Criticisms:
 Django test code is in same directory as production

code.
 Should have separate "test" files for each target,

don't bundle them into one file (tests.py)
 tests.py is poor name. Test what? Don't use

plural (no "s")!

Design: Low Coupling

Good software design strives for low coupling.

Especially, low or no coupling between unrelated parts.

What features of Django reduce coupling?

1. Django divides a project into self-contained "apps"

2. {% url 'name' %} reduces coupling between URLS
and templates

3. ???

Design: Portability and Reuse

Good software design enables portability and code
reuse.

A framework itself is both portable and reusable (we use
it to create our own web app)!

How does Django enable us to move or reuse our own
web application code?

Django and Git

When you commit your Django project to Git,

what files should you not commit?

> Add them to .gitignore

> If you don't know what to put in .gitignore, create a repo
on Github and ask Github to create a .gitignore file
for you.

> What is *.pyc ? What is *.py[cod] ?

Is Django a Web Server?

[] Yes
[] No

Django is Not a Web Server

Web Developer

But I can type: manage.py runserver

and it works right out of the box.
How to you explain that?

Django includes a "light-weight"
HTTP server

Intended for development only.

Not suitable for production (Tutorial, part 1).

Django uses WSGI interface

WSGI (Web Server Gateway Interface) is a standard
interface for communication between a Python web app
and a web server.

WSGI
adapter

WSGI

Callable
WSGI

interface

You can run Django in any web server that:

 supports WSGI or has an adapter for WSGI interface

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

