

Intro to Django and MVC

An overview to help make learning Django easier.

Topics

1. Model-View-Controller (MVC) Design Pattern
most web apps use this pattern.

2. How Django Processes a Web Request

3. Structure of a Django Project
...and tip so your configuration directory always has
the same name

Model-View-Controller Pattern

There are many ways to implement MVC, with different
interactions between M-V-C. This is just one of them:

Displays info
to user and

accepts
interactions.

Handles requests or events from UI; converts
them into commands for model or views.
May receive notifications from models.

Application
logic, data,
and rules.

Model usually doesn't
know about the UI (View).

Simple MVC for Web Apps

Shows flow of request-response; the label "Data" is
misleading. Controller makes requests of Application
Layer (including Model) to handle user requests.

Source: https://www.tech101.in/streamline-your-system-with-the-mvc-model/

MVC in Web Apps

Views - web pages or code that generates web pages.
Views may be passive (HTML) or interact with user via
code such as Javascript in web pages.

Controllers - code that receives user's request. Usually
the first thing after the "router" (part of framework that
assigns URLs to methods).

Model(s) - responsible for application data and logic.
Often involves handling persistent data.

Why MVC?

A dynamic web page (like pages from amazon.com) are
created from:

Layout - how the page should be structured

Data - source of info that goes in the page

Business Logic & Application Logic - how to handle
user requests, managing flow of the application

Separation of Concerns

Separate these three concerns into different components.

Controller - handles requests & performs application logic

Model - handles data and business logic

View - handles layout of pages

Handling a Web Request

1. TCP/IP packet is received by a server (host).

2. Host applies filters (firewall), then uses
port and protocol to determine which
process to give the packet to.

3. Web app server (nginx) processes
HTTP request and gives it to the web
application.

HTTP request

Web App Handles the Request

4. Django (framework code) parses the request to create
an HttpRequest object.

5. It uses the app's router (Django "URLconf") to decide
which controller code should handle the request.

settings.
py

urls.py

app/views.py
(controller)

HttpRequest

6. Controller examines the request &
decides what to do. It calls methods

in model classes to perform
business logic & access app data.

(models)

The App Returns a Response

7. The controller creates and returns an HttpResponse.
 controller (Django "view") can create response itself, or
 render a template to create a web page

app/views.py
(controller)

HTTPResponse

render

web page template

Send the Response!

9. Web app server (nginx) may add some
headers, returns response as IO

stream.

8. Django framework returns
HttpResponse to web app server as a
standard HTTP response.

HTTP response

Another Illustration of Request Lifecycle

From http://django-easy-tutorial.blogspot.com/2017/03/django-request-lifecycle.html

MVC or MVT?

Django says the framework uses "Model-View-Template"
not MVC design pattern.

What Django calls "views" are similar to what other
frameworks call "controllers".

Intro to Django MVT with explanation:

https://www.youtube.com/watch?v=GGkFg52Ot5o

(5 minutes)

Structure of a Django Project

Create a project named "mysite".

cmd> django-admin startproject mysite

Creates:

mysite/
 manage.py

 mysite/
 __init__.py
 settings.py
 urls.py
 wsgi.py

subdirectory for
project settings and
configuration

script to start, stop, test, or
update the project

"mysite" configuration directory

Every Django project has a project configuration dir.

settings.py - names of apps and "middleware" you use.

 - database location and credentials

 - variables used by your apps and Django

 - a project "secret" key

urls.py - defines which URLs should be sent to which

 methods.

 Used to "route" requests to your code, e.g.

 GET /polls/1 -> polls.views.detail(1)

Demo: real settings.py and urls.py

View an actual settings.py and urls.py file.

Demo: start the built-in server

cmd> python manage.py runserver

You can view your Django app at http://localhost:8000

Django is a web application framework.

Its not a "web server", but includes a web server for
development. Its not a production-level server.

Demo: add static content

While the development server is still running!

1. Edit mysite/settings.py. At the end of file add:

 STATIC_URL = '/static/'

 STATICFILES_DIRS = [

 os.path.join(BASE_DIR, 'static'),

]

2. In the project base dir, create a subdir "static/".
Then create static/greeting.html

3. You can view this file without restarting server!

http://localhost:8000/static/greeting.html

Create an "app" for your code

Inside your django project, create an "app" for actual code:

cmd> cd mysite

cmd> python manage.py startapp polls

Creates:

mysite/
 manage.py
 polls/
 admin.py
 apps.py
 migrations/
 models.py
 tests.py
 urls.py urls is optional
 views.py

subdirectory for
your application
code.

admin.py

Used to "register" your models with Django middleware.

Can also be used to customize the "admin" panel for
your app.

admin.py
from django.contrib import admin
from .models import Question, Choice

Register your models here.
admin.site.register(Question)
admin.site.register(Choice)

Our Model classes

apps.py

Define a Class for app configuration and a name for your
app. It inherits everything from AppConfig, so you
don't need to write any code.

 This is used in settings.py (in project config dir).

apps.py
class Polls(AppConfig):
 name = 'polls'

models.py

Define Model classes containing data and application
logic. Model objects are saved to a database.

This is one of the most important parts of your app!

models.py
from django.db import models
class Question(models.Model):
 question_text = models.CharField(
 'question', max_length=100)
 pub_date = models.DateTimeField(
 'date published')

 def isPublished(self):
 return datetime.now() > self.pub_date

migrations/

A directory containing "SQL migrations".

When you change the structure of models, the structure of
the database tables (schema) must be updated to match.

Django creates an "SQL migration" in this directory
whenever you run:

 python manage.py makemigrations

migrations/
 0001_initial.py
 0002_add_closing_date.py

tests.py

A file for unit tests of your app.

Putting all your tests in one file is not a good idea.

We will later replace this file with a tests/ directory.

tests.py
from django.test import TestCase

class QuestionModelTest(TestCase):
 def test_create_question(self):
 q = Question(question_text="...")
 q.save()
 self.assertTrue(q.id > 0)
 ...

Use django.test.TestCase

Use django.test.TestCase instead
of Python's TestCase.

Django's TestCase adds important
features.

- creates a "test" database in-
memory before each test.

- extra assert methods, like
assertInHTML, assertRedirects

- provides a Client class for testing
 views.

views.py

A file for your "view" methods that handle requests from
the user. views may also be classes.

Views often provide data for an HTML "template" and tell
Django to render it, as in example below.

views.py

def index(request):
 """show index of recent poll questions"""
 questions = Question.objects.order_by('id')[:10]
 return render(request, 'polls/index.html',
 {'question_list':questions})

...

views, requests, and responses

Django creates an HttpRequest object from the data in the
HTTP request received from the web.

It gives this request object to the view.

A view returns an HttpResponse that Django returns.

views.py

def index(request):
 """show index of recent poll questions"""
 questions = Question.objects.order_by('id')[:10]
 return render(request, 'polls/index.html',
 {'question_list':questions})

...

HttpRequest object

render() creates HttpResponse object

Templates

Web apps return customized HTML pages.

Apps inject data values into a "template" for an HTML
page. A "rendering engine" processes the template.

Templates may include other templates.

List
template

.html

Base
template

list_view.py
 list = ...
 template =
 'List_template'

Rendering
Engine

render(
 template,
 list)

includes

process

HTML Page
including

data from list

templates/

You create this directory for your HTML templates.

Django recommends an extra subdirectory so that
references to files are unambiguous.

mysite/
 manage.py
 polls/
 admin.py
 apps.py
 ...
 templates/polls/
 index.html
 poll_detail.html
 poll_results.html
 views.py

Template to show a List of Questions

{%...%} are commands, {{ name }} are for data values.

{% extends 'base.html' %}
{% block content %}
<h1>List of Polls</h1>
<table>
 {% for question in question_list %}
 <tr>
 <td><a href="{% url 'polls:detail'
 question.id %}">
 {{question.question_text}}

 </td>
 </tr>
 {% endfor %}
</table>

template can access
attributes of an object

Django Project Creation

By default, the project config directory has the same
name as the project main directory.

cmd> django-admin startproject amazon

Creates:

amazon/
 manage.py
 amazon/
 __init__.py
 settings.py
 urls.py
 wsgi.py

This is CONFUSING

I want "mysite" !!

I want the project config directory to always be named
"mysite" ... or "config" or (whatever you prefer).

We should have a standard name for the config dir
for all our projects!

amazon/
 manage.py
 mysite/
 __init__.py
 settings.py
 urls.py
 wsgi.py

I want my settings here!

Method 1: Rename project

Always create a project with name "mysite",
then rename the top-level project directory.

cmd> django-admin startproject mysite

cmd> rename mysite amazon

amazon/
 manage.py
 mysite/
 __init__.py
 settings.py
 urls.py
 wsgi.py

Method 2: Create project in "."

Create project directory yourself, "cd" to that directory,
and then run "startproject" with an extra parameter:

cmd> mkdir amazon

cmd> chdir amazon

cmd> django-admin startproject mysite .

"." means create the project in the current directory.

Resources for MVC

Too many! Everyone has their own interpretation of the
MVC Pattern. A useful place to start is:

Wikipedia page for "MVC Design Pattern"

JavaFX uses MVC. Views are templates written in
FXML, or generated by the controller.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

