
Remotes

Working with a Remote Repo

Git is a distributed version control system.

 git was invented to manage the Linux kernel source
code, with thousands of developers in over a
hundred countries.

You can have many repositories
on the net, called "remotes".

They may all be different!

No "master" repository
-- all repos are equal.

Git Hosting Sites

You can create free git repositories on these sites, for
individual or team projects.

Github - https://github.com

Bitbucket - https://bitbucket.org

GitLab - https://gitlab.com

Commands for Remotes

Common commands for using a remote repo are:

git clone copy remote repo to your computer

git remote add define URL of a remote repository

git remote -v list remotes, with URLS

git push "push" local updates to a remote

git pull download and merge remote updates

git fetch download remote updates, but don't
merge into your working copy

Cloning a Remote Repository

Create a local copy of a Github repo. Assign the name
"origin" to the remote repo.

cmd> git clone
 https://github.com/user/tictactoe

Cloning into "tictactoe" ...

(git creates a "tictactoe" directory for file)

Or, use the SSH protocol (requires SSH key)

cmd> git clone
 git@github.com:user/tictactoe

Viewing Your Remotes

View the names and URLs of "remotes" for a repo:

cmd> cd tictactoe

cmd> git remote -v

origin https://github.com/user/tictactoe (fetch)

origin https://github.com/user/tictactoe (pull)

You Can Have Several Remotes

Each remote has a different name (origin, bbucket).

The username and repo name can be different, too.

cmd> cd tictactoe

cmd> git remote -v

origin https://github.com/barz/tictactoe (fetch)

origin https://github.com/barz/tictactoe (pull)

bbucket git@bitbucket.com:fooz/ttt (fetch)

bbucket git@bitbucket.com:fooz/ttt (pull)

Syntax for all "remote" commands

git remote

git help remote

git remote -v

git remote add remote_name URL

git remote show remote_name

git remote set-url remote_name new_url

Change the remote location

You make a copy of "git-commands" in your own Github account.
Now change URL of the remote to "push" do:

cmd> git remote -v

origin https://github.com/ISP2020/git-commands-fatalai

cmd> git remote set-url origin
 https://github.com/fatalai/git-commands

This does not move the repository on Github!

You must do that on Github (in Settings).

Detailed Info about a Remote

cmd> git remote show origin

* remote origin

 Fetch URL: https://github.com/fatalai/git-commands

 Push URL: https://github.com/fatalai/git-commands

 HEAD branch: master

 Remote branches:

 master tracked

 dev-branch tracked

 Local branch configured for 'git pull':

 master merges with remote master

Remote Branches

Branches are not automatically synced between remotes.

A local branch may not have any remote branch.

Host A

master

dev-foo

bug101

Host B

master

dev-bev

bug101

Host C

master

dev-bev

bug202

tracks

tracks

tracks

tracks

Remote Branch Naming

On your machine, refer to a remote branch as:

remote_name/branch_name

E.g. origin/master - master branch on "origin"

Example from Pro Git Book
You clone a repo from git.ourcompany.com.
Your repo now has 2 labels: master and origin/master

After some commits, branches diverge
You commit some work locally - your local master moves
ahead. Someone else pushes work to ourcompany.com

Fetch updates from remote
fetch copies the remote branch into your local repo.

What Has Changed?
View the differences. There may be many:

cmd> git diff master origin/master

diff --git a/README.md b/README.md

index ff3ac4b..1434aa0 100644

--- a/README.md

+++ b/README.md

@@ -1,6 +1,6 @@

 ## Unit Testing Procedure

diff --git a/ctl_test.py b/ctl_test.py

--- a/ctl_test.py

+++ b/ctl_test.py

Merge and resolve conflicts
Merge the branches on your computer, resolve any
conflicts, and commit.

Now your local master is ahead of the tracking branch.

git merge

Push your work to ourcompany
If nothing has changed on ourcompany master, it will
advance to match your branch.

git.ourcompany.com

git push

Questions

1. If you "push" when master on ourcompany.com has a
commit that is not in your tracking branch, what
happens?

2. If you "fetch" and there is no new work on
ourcompany.com, what will happen?

Tracking Branch

Remote-tracking branch is a local branch that holds a
reference to the state of a remote branch.

● tracking branches exist in your local repository

● they update automatically when you contact the remote
(push, fetch, pull, remote show) -- you can't modify
them yourself.

● name syntax: remote_name/branch_name

Tracking a Remote Branch

Two cases:

1. you checkout a remote branch and track it

2. you create a local branch, then push it to a remote (a
tracking branch is created automatically)

Checkout a Remote & Track it

Many commands for this

these two do the same thing

cmd> git checkout --track origin/dev-foo

cmd> git checkout -b dev-foo origin/dev-
foo

create branch with different name from remote branch

cmd> git branch -t foo origin/dev-foo

(-t is short form of --track)

Push a Local Branch

For a local branch that does not yet exist in the remote
remote repository:

cmd> git checkout my-branch

cmd> git push -u origin my-branch

-u is short for --set-upstream

"my-branch" is name to assign to the new branch on
origin.

Who is Ahead? Me or Origin?

Useful command:

cmd> git branch -vv

Working with a Remote on a Project

Workflow for an individual project

Check status

Work on code

Test & review

Check status:
what changed?

Stage files
(git add)

git commit

Push to
remote

START

Git Workflow for an Individual project

1) Check status of your working copy (*)

 cmd> git status

 It should be clean. If not, do "git diff" and then...

2) Commit changes or update your working copy.

 (git diff, git add -u, git commit)

3) Do some work:

 Code, test. Code, test. Review.

 (*) if you work on more than one computer, you need to
"fetch" or "pull" any work from Github that is not on this
computer (i.e. this local repo).

Git Workflow (cont'd)

4) After code-test-reivew: check status again

 cmd> git status
 Changes not staged for commit:

 modified: src/Problem2.java

 Untracked files:

 src/Problem3.java

5) Add and commit your work to the local repository
cmd> git add src/Problem2.java src/Problem3.java

cmd> git commit -m "Solved problems 2 and 3"

[master 29abae0] Solved problem 2 and 3

2 files changed, 44 insertions(+), 5 deletions

Git Workflow (update remote)

6) Push the changes to Github

 cmd> git push
 Compressing objects: 100% (12/12), done.

 Writing objects: 100% (12/12), 3.60 KiB,
done.

 Total 12 (delta 9), reused 0 (delta 0)

 remote: Resolving deltas: 100% (9/9), ...

 To https://github.com/fatailaijon/demo.git

 468abdf..29abae0 master -> master

7) Take a break.

That's it! Repeat the cycle as you work.

Github Workflow for Team Projects

On a team project, other people will commit files to the
same Github repository!

You should update your local repository from Github before
trying to "push" your work to Github.

Use "Github Flow" as workflow in team projects.

"Github Flow" is a separate topic. Its good for both team
and solo projects.

Github Flow is the convention for team work in this course.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

