
Applied Software Project ManagementApplied Software Project Management

Merge Practice

Practice resolving conflicts in git.

Applied Software Project ManagementApplied Software Project Management

Merging Branches
A common git activity. 2 cases:

1. merge two different named branches

 e.g. merge a feature branch into master

2. merge a local and "remote tracking" branch,

e.g. master (local) and origin/master (tracking)

merge commit

Applied Software Project ManagementApplied Software Project Management

Exercise
We will deliberately create a conflict by editing the
README.md in two copies of same repo:

1. Github using Github's online editor

2. Your local repo using any editor

Then discover the differences and resolve them.

Applied Software Project ManagementApplied Software Project Management

1. Make a change on Github

Use your git-commands repo on Github

1. On Github, edit README.md using Github's
online editor.

Add these three lines at the top:

2. Write a descriptive commit message and Commit
the change (green Commit button).

The Ultimate Guide to Using Git

For The Impatient.

Applied Software Project ManagementApplied Software Project Management

2. Make a different change in
your local repo

1. In your local git-commands repo, edit README.md
(in your working copy)

Add this title at the top of file:

2. Make some other change in README.md (anything).

3. Commit the changes to your local repo.
git add -u
git commit -m "Add a title to README"

Quick Guide to Git

By Your Name

Applied Software Project ManagementApplied Software Project Management

3. Check Status
git status

It should return:

On branch master
Your branch is ahead of 'origin/master' by
 1 commit.
(use "git push" to publish your local commits)
nothing to commit, working tree clean

What is origin/master ???
Where is it ???

'origin/master' is a short form for 'remotes/origin/master'

Applied Software Project ManagementApplied Software Project Management

4. What did I change?
You can compare all the changes between your local
"master" branch and the tracking branch
"origin/master".

Syntax: git diff commit1 commit2

where commit1 & commit2 refer to any commits.

> git diff master origin/master

 It should show what you changed locally.

 Does diff show the title line you added on Github?

Applied Software Project ManagementApplied Software Project Management

5. push your work

Since your local copy is ahead of origin/master, push it.

 > git push

What happens?

Remote repository contains work that you do not
have! [rejected] master -> master (fetch
first)

error: failed to push some refs to
'https://github.com/...'

hint: Updates were rejected because the remote
contains work that you do not have locally.

Applied Software Project ManagementApplied Software Project Management

This is Good!

This is actually a good thing.

Git won't let you accidentally overwrite work that
someone else has added to the repository.

Git forces you to merge the differences first.

Applied Software Project ManagementApplied Software Project Management

What Went Wrong?
"git status" and "git diff" use only files in your local repo.

They do not send a request over the network to the
remote.

Try this:

> git remote show origin

Does it tell you anything useful???

Applied Software Project ManagementApplied Software Project Management

git remote show origin
This command uses the network to check status of "origin".

> git remote show origin
* remote origin
 Fetch URL: https://github.com/youracct/...
 Push URL: https://github.com/youracct/...
 HEAD branch: master
 Remote branch:
 master tracked
 Local branch configured for 'git pull':
 master merges with remote master
 Local ref configured for 'git push':
 master pushes to master (local out of
date)

Applied Software Project ManagementApplied Software Project Management

6. What has changed on "origin"?

Let's see what has changed on "origin"...

Update your "tracking branch" for origin/master:

git fetch

This fetches the latest revisions from the remote origin
into your tracking branch (origin/master) but
does not merge them into your local branch (master).

It does not change your working copy either.

Applied Software Project ManagementApplied Software Project Management

7. compare branches (again)

Show a graph of all branches, including tracking
branches:

 gitk --all

View the differences between all files in a terminal
window:

 git diff master origin/master

Does "git diff" show the differences in the
title line now?

Applied Software Project ManagementApplied Software Project Management

Where did "fetch" put the updates?
"git fetch" downloads changes from origin
(Github).

Where did git save these updates?

[] In your working copy

[] In the `master` branch

[] In the `origin/master` tracking branch

Applied Software Project ManagementApplied Software Project Management

"diff" format

diff is a standard command that shows differences in a
standard format. It can be used to create patches, too!

diff --git a/README.md b/README.md
index 21b69e8..09b0702 100644
--- a/README.md ('a' = local version)
+++ b/README.md ('b' = remote version)
@@ -1,6 +1,6 @@
-# Quick Guide to Git
+# The Ultimate Guide to Using Git

-By Harry Hacker
+***For the impatient.***

Applied Software Project ManagementApplied Software Project Management

8. merge the two versions

Use "git merge" to automatically merge branches.

cmd> git merge --no-commit

Auto-merging README.md

CONFLICT (content): Merge conflict in
README.md

Automatic merge failed; fix conflicts and
then commit the result.

--no-commit gives you a chance to review the results,
even if automatic merge succeeds.

Applied Software Project ManagementApplied Software Project Management

9. Edit and fix conflicts

Use an editor to examine the result of all files that
contain conflicts.

Part(s) containing a conflict will look like this:

<<<<<<<<< HEAD

The text from your local repository

=========

Conflicting text from the remote version

>>>>>>>>> refs/remotes/origin/master

Note: Auto-merge may create bugs by
successfully merging parts of code that are
incompatible! Always test code after merge.

Applied Software Project ManagementApplied Software Project Management

Fix conflicts yourself
You must decide which conflicting lines to keep and

which to discard.

 Keep lines you want, delete the others.

 Delete the merge markers ("<<<<", ">>>>", and
"====").

<<<<<<<<< HEAD

The text from your local version

=========

Conflicting text from the remote version

>>>>>>>>> refs/remotes/origin/master

Applied Software Project ManagementApplied Software Project Management

10. Mark Conflict as Resolved
Use "git status" to see that there is a conflict

cmd> git status
Unmerged paths:
 (use "git add <file>..." to mark resolution)
both modified: README.md

When you are satisfied that file is fixed, then...

cmd> git add README.md

cmd> git commit

(You should write a good commit message
explaining the merge.)

cmd> git push

Applied Software Project ManagementApplied Software Project Management

I Give Up!
If the merge creates too many conflicts to fix, you can
"undo" the merge and try something else.

cmd> git merge --abort

Applied Software Project ManagementApplied Software Project Management

Graphical Merge Tools
Graphical tools show the differences side-by-side.

1. IDE visual merge feature

2. Graphical mergetool (enter: "git help mergetool").

3. Merge on Github

 - ok if there are no conflicts (e.g. fast-forward merge)

 - for conflicts, merge on your own computer so you
can run tests before committing.

Applied Software Project ManagementApplied Software Project Management

End Notes

Optional material you can ignore.

Applied Software Project ManagementApplied Software Project Management

Understanding diffs
"diff" is a Unix command to show differences between

text files. It shows:

 lines changed (differences)

 lines added in one file

 lines deleted in one file

diff may show surrounding identical lines for context, to
make it easier to identify the "diff" in code.

Example: make 2 copies of a text file. Change one copy
(add lines, change lines, delete lines). Run diff:

cmd> diff a.txt b.txt

Applied Software Project ManagementApplied Software Project Management

Diffs on Github
(Demo in class.)

Click on "commits" link on a repository.

Find an interesting commit and click the hash (6b57...)

Github shows changes from previous commit.

Applied Software Project ManagementApplied Software Project Management

"git pull" = "git fetch" + "git merge"
"git pull" performs two commands:

git fetch - fetch updates from a remote repository.
It saves the remote in a separate branch named:

 origin/master or origin/branchname

git merge - merge two development histories.

 If you don't specify which branches to merge,

 the default is HEAD and origin/tracking_branch_name

Applied Software Project ManagementApplied Software Project Management

git fetch and diff
It is safer to use "git fetch" instead of "git pull"

1. fetch the remote branch: git fetch

2. in your local repo, the branch you just fetched is
named origin/master or origin/branch-name

3. view differences between working copy and remote:

 git diff origin/master

 == or ==

4. view differences between local HEAD and remote:

 git diff HEAD origin/master

Applied Software Project ManagementApplied Software Project Management

Visual Merge Tools
You can use a graphical diff viewer to both view and
resolve differences. It is easier to comprehend.

meld and diffuse are good tools known by git.

cmd> git help mergetool

I use meld or diffuse. Example:

cmd> git mergetool --tool=meld

Applied Software Project ManagementApplied Software Project Management

cmd> git mergetool --tool=meld

Merged version
is here.

Applied Software Project ManagementApplied Software Project Management

Common Cause of Conflicts

1. Developer A clones a repo from Github, or "pulls"
latest rev from Github. Now he is up to date!

2. Developer A starts work on his local copy.

3. Developer B pushes a change to some files in the
same repo to Github.

4. Developer A commits his work and does "git push".

What Happens?

Applied Software Project ManagementApplied Software Project Management

What Happens?
dev-A> git commit -m "add tests for ..."

dev-A> git push

! [rejected] master -> master (fetch first)

error: failed to push some refs to https://github.com/...

hint: Updates were rejected because the remote contains

work that you do not have locally. This is usually caused

by another repository pushing to the same ref.

You may want to first integrate the remote changes

(e.g., 'git pull ...') before pushing again.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

