
Using Github

What Github Does

 Online project hosting site

 Share git repositories, with access control

 Issue Tracking

 Project Boards

 Automated testing, builds, & other services

 Documentation wiki and web pages (github.io)

 Integrates with other services, e.g. Travis CI

Github Profile

Example of SKE
student profiles.

1. Real name

2. Photo

3. (Optional) Email

4. Description of you

Creating and using a Repository

Case 1: Project code is on your local computer.
You want to copy it to Github.

Case 2: Project already exists on Github.
You want to copy it to your computer.

Special Case:

Case 3: A new project (no files yet).

Case 1: Starting from Local Project
You already have a project on your computer

1. Create a local "git" repository.

 cmd> git init

 # These two files are typical

 cmd> git add .gitignore README.md

 # Add some source code

 cmd> git add src/*.java (for example)

 # Commit code to github

 cmd> git commit -m "initial code checkin"

Case 1: Remote must be empty

2. On Github, create an empty repository.

Case 1: add Github as remote

3. Copy the URL of new Github repository (https or ssh).

4. In your local project, add Github as a remote repository
named "origin":

 cmd> git remote add origin
 https://github.com/fatalaijon/demo.git

Case 1: push your code to Github!

 5. Push (copy) the local repository to Github

 cmd> git push -u origin master

You only need "-u origin master" the first time you push
to Github.

Next time, just type "git push".

"master" or "main" ?

The standard name of the default git branch is master

But some people object to the words "master" and "slave".

So, Microsoft changed the name to main

You can use either name (master or main).

Github quietly tries to get you to rename your default
branch to "main" by offering this cut & paste code:

…or push an existing repository from the command line

git remote add origin git@github.com:fatalaijon/demo.git

git branch -M main

git push -u origin main

Be careful what you copy and paste!

Case 2: Starting from Github

A project already exists on Github.
You want to "clone" it your local computer.

1. On Github, copy the Github project URL
 https://github.com/user/demo.git

or: go to project on Github and click on

and copy the URL.

2. In your workspace directory, type:
cmd> git clone https://github.com/user/demo

NOTE: "git clone" creates a new directory named "demo"
inside your current directory. If this directory already
exists, clone won't work.

Case 2: ready to use

That's it!

Github is automatically the remote named "origin".

To copy your local work back to Github, just "git push"
your commited work.

Case 2a: use a different project name

The name of your local project directory (directory name)
can be different from the Github repository name.

1) Specify a local directory name when you "clone":

Clone "demo" into local directory "mydemo"

cmd> git clone https://github.com/fatalai
jon/demo.git mydemo

Syntax: git clone remote_url local_repo_name

-- or --

2) rename the directory yourself!

 use any file manager to rename directory

Comparison of 2 Cases

(done in class)

Case 3: You don't have a project yet

You can use either case 1 or case 2.

Case 1: Create a local project first. Seems more natural.

Case 2: Create a new project on Github with README
and .gitingore, then clone it. Requires less typing.

Pro Case: IDEs can do some of this automatically. But
you need to understand the basic way first.

Workflow for an individual project

Check status
of working copy
& remote

Work on code

Test & reviewStage files
(git add)

git commit

Push to
remote

START

fix bugs

Git Workflow for an Individual project

1) Check status of your working copy (*)

 cmd> git status

 It should be clean. If not, do "git diff" and then...

2) Commit changes or update your working copy.

 (git diff, git add -u, git commit)

3) Do some work:

 Code, test. Code, test. Review.

 (*) if you work on more than one computer, you need to
"fetch" or "pull" any work from Github that is not on this
computer (i.e. this local repo).

Git Workflow (cont'd)

4) After code-test-reivew: check status again

 cmd> git status
 Changes not staged for commit:

 modified: src/Problem2.java

 Untracked files:

 src/Problem3.java

5) Add and commit your work to the local repository
cmd> git add src/Problem2.java src/Problem3.java

cmd> git commit -m "Solved problems 2 and 3"

[master 29abae0] Solved problem 2 and 3

2 files changed, 44 insertions(+), 5 deletions

Git Workflow (update remote)

6) Push the changes to Github

 cmd> git push
 Compressing objects: 100% (12/12), done.

 Writing objects: 100% (12/12), 3.60 KiB,
done.

 Total 12 (delta 9), reused 0 (delta 0)

 remote: Resolving deltas: 100% (9/9), ...

 To https://github.com/fatailaijon/demo.git

 468abdf..29abae0 master -> master

7) Take a break.

That's it! Repeat the cycle as you work.

Github Workflow for Team Projects

On a team project, other people will commit files to the
same Github repository!

You should update your local repository from Github before
you try to "push" your work to Github.

Use "Github Flow" as workflow in team projects.

"Github Flow" is a separate topic in this course. It is good
for both team and solo projects.

Github Flow is the convention for team work in this course.

Github Classroom

Github Classroom automates creating a git project with
starter code (template code).

The steps are:

1. Instructor provides a URL for a Github assignment.

2. You visit the URL. Login to Github if necessary.

3. "Accept" the assignment.

4. Github creates a repo with starter code for you. It
offers a link to the repo. It may redirect you there.

Github Classroom (2)

5. The README file in your repo may contain instructors.
Read it.

6. Clone the repo in the usual way.

7. Do the assignment on your local computer.

8. Important: Commit all your work. Don't forget to add any
new files.

9. "git push" to push to Github.

10. Check your repo on Github. Is your work there?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

