

Logging

James Brucker

KBank data stolen

Pipit Aneaknithi, Kasikornbank president, revealed that on
July 25, KBank found that 3,000 names of corporate
customers using KBank’s website for the letter of guarantee
service might have been leaked.

As soon as KBank detected the irregularity, it said it
immediately closed the loophole... The data that may have
been leaked was the names and telephone numbers of
KBank’s corporate customers using the letter of guarantee
service via the website only.

The Nation August 01, 2018 18:47

http://www.nationmultimedia.com/detail/business/
30351237

KTB customer data stolen

KTB president Payong Srivanich said that the bank had
detected general information from 120,000 retail
customers who applied for mortgages and personal loans
online ... was hacked in the days leading up the July
holidays.

Bangkok Post - August 01, 2018 04:00

https://www.bangkokpost.com/news/security/1513410/
kbank-ktb-targeted-in-cyber-attacks

How Facebook was Hacked

A flaw in "View As" feature that enables someone to
preview a page as another user. Flaw has been present
since 2017, but first detected on 14 Sep 2018 due to rise
in suspicious activity.

Facebook knows exactly which accounts were hacked
and you can check your account.

https://www.wired.com/story/how-facebook-hackers-
compromised-30-million-accounts/

https://thehackernews.com/2018/10/hack-facebook-
account.html

How Did They Know?

How did KBank know 3,000 customer's data stolen ...
and what data was stolen?

How did KTB know 120,000 customers "who applied for
a mortgage or loan" had data stolen?

How did Facebook know whose data was stolen?

LOGGING

They keep "logs" of events and activity.

Linux Logs Almost Everything

Unix/Linux keep logs for many services is /var/log.

Typical logs are:

auth.log - authentication related (login, sudo)

boot.log - system start-up (boot) activity

dpkg.log - package install and configuration messages

kern.log - messages from the kernel

lastlog - most recent login by each user

ufw.log - firewall messages

Log files are automatically rotated every 1 - 7 days, so
they do not become too large.

Python Logging
logging - Python logging package

get a named logger. Use a module or app name

logger = logging.getLogger("test")

log messages at different log levels

logger.debug("I found a bug")

logger.info("some interesting info")

logger.warning("something unusual happened")

logger.error("An error occurred & I squashed it.")

logger.critical("A critical error or failure")

"Convenience" Methods
I really dislike this and don't use it.
It obscures what is really happening.

The logging module provides functions that invoke the
default logger:

logging.debug("looks like a bug")

logging.info("something happened")

logging.warning("something unusual happened")

logging.error("An error occurred.")

logging.critical("A critical error or failure")

5 Log Levels

Example:

logger.critical("Can't connect to db")

logger.error("Error rendering template")

logger.warning("Failed login by ...")

logger.info("Successful login by ...")

logger.debug(request)

an alias for CRITICAL

logger.log(level, message, ...)

logger.log(5, "Enter vote function")

Level Names:

CRITICAL = 50

ERROR = 40

WARNING = 30

INFO = 20

DEBUG = 10

FATAL = 50

Any log level

What to Log?

log some events

logger.critical("Connection to database failed")

logger.error("Poll question has no choices: "+question)

logger.warning("Failed login by " + form.username)

logger.info("Successful login by " + user.username)

logger.debug(f"foo(x) called with x = {x}")

Logging Exceptions

try:

 q = Question.objects.get(id=1)

except Exception as ex:

 logger.exception("Expected question not found", ex)

logger.exception() is same as error()
but it also prints a stack trace of the exception.

Loggers have a Named Hierarchy

Root logger: root = logging.getLogger()

'polls' logger: log1 = logging.getLogger('polls')

'polls.models' log: log2 = logging.getLogger('polls.models')

root logger

'polls' logger

'polls.models' logger

Log messages
propagate to parent
loggers (optional).

Inherit Config from
Parent Loggers

logger.getLogger("name") is Singleton

log1 = logging.getLogger("auth")

log2 = logging.getLogger("auth")

are they the same object?

log1 is log2

True

is the logger name case sensitive?

log3 = logging.getLogger("AUTH")

log1 is log3

False

This creates only one instance for each named logger.

Good! We can get the logger whenever we need it.
Don't need to save logger as an attribute.

Use module name for logger name

You can use any name you want for logger.

Convention: use module name or package name

A good name helps you track source of messages.

1. A logger for this module

 log = logging.getLogger(__name__)

2. One logger for "polls" app

 log = logging.getLogger("polls")

When to Use Logging?

Python "Logging HOWTO" has clear advice.

https://docs.python.org/3/howto/logging.html#when-to-
use-logging

Where to Log?

You specify where log messages are printed.

 Console, aka Standard Output (the default)

 a File

 Database

 Network connection to a log server

You can use more than one destination, or route log
messages based on log level or source.

You Can Control Logging

1. Set the threshold level

"Only print messages of level WARNING or higher"

 logging.setLevel(logging.WARNING)

2. Write log messages to a file or other service

logging.basicConfig(filename="myapp.log")

3. Change the format of log messages

logging.basicConfig(
format="%(asctime)s %(name)s %
(levelname)s: %(message)s")

How to Configure Logging?

1. In Code: logging.basicConfig()

2. In Code: detailed configuration: logging.setLevel(n)

3. Configuration file
 https://docs.python-guide.org/writing/logging/

 Django settings.py

 LOGGING = { 'formatters': ...,

 'handlers': ...,

 'loggers': ...

 }

Example log configuration in code
Default: only print WARNING or higher

logger = logging.getLogger()

logger.info("This message is not printed")

logger.warn("This is a warning")

This is a warning

Set message threshold level to INFO (or higher)

logger.setLevel(logging.INFO)

logger.info("This message IS printed")

This message IS printed

logger.debug("this is not printed")

Logging Practice

Instructions: Logging practice on course github.io site

demo_log.py code you can use (also on github.io site)

Log Message Propagation

If logger.propagate = True (the default)
then events logged to this logger will be passed to
handlers of higher level loggers, in addition to handlers
of this logger. Threshold & filters of ancestor loggers
are ignored.

[see "class logging.Logger" in Python Docs]

root = logging.getLogger() - the root logger

loga = logging.getLogger('a') - descendent of root

logb = logging.getLogger('a.b') - descendent of 'a' & root

logb.warn("Warning!") - sent to logb, then loga, then root

You must try this yourself in order to understand what it does.

Logging Architecture
logging

Logger

manages a collection of ...

Handler

filter messages and send them to...
1 .. *

StreamHandler

level = ERROR
formatter =
stream = ...

FileHandler

level = INFO
formatter =
file = ...

SysLogHandler

level = WARN
formatter =
syslog = ...

a Logger may have many
handlers. Each handler has its
own log level and formatter.

Formatter

Separation of Responsibilities

Draw a UML class diagram showing relationship
between:

Logger

Handler

FileHandler

ConsoleHandler

Formatter

One we didn't cover: Filter

Configuration Example
A handler that writes to a file

filehandler = logging.FileHandler("/tmp/demo.log")

This handler should log everything

Note that logger's own log-level may override this.

filehandler.setLevel(logging.DEBUG)

Message format is: 2019-10-28 10:45:23 a.b INFO: hi there

formatter = logging.Formatter(

 "%(asctime)s %(name)s %(levelname)s: %(message)s"
)

Tell file handler to use this formatter

filehandler.setFormatter(formatter)

Add it to root logger

root = logging.getLogger()

root.addHandler(filehandler)

Why Separate Responsibilities?
1. What is the benefit of separating Logger, Handler, and

Formatter?

Imagine if we had separate loggers for each:
SteamLogger
FileLogger
RotatingFileLogger
SyslogLogger

 . . .

2. Is there a Design Principle that recommends this
design?

FYI: Log4J & SLF4J use the same design.

Why Separate Responsibilities?

Design Principles

Single Responsibility Principle

Don't Repeat Yourself - use delegation & Strategy Pattern

 - avoid duplicate code, duplicate logic, duplicate bugs

Open-Closed Principle - we can extend functionality of
Logging by writing our own Handler or Formatter.

What do the method names tell you?
Tell file handler to use this formatter

filehandler.setFormatter(formatter)

Add handler to root logger

logger = logging.getLogger()

logger.addHandler(filehandler)

Why is one named "setSomething"

and the other "addSomething"?

Log Handlers and Formatters

Python has many Log Handlers you can choose:

https://docs.python.org/3/library/logging.handlers.html

Important Handlers:

logging.StreamHandler(stream=sys.stdout)

logging.FileHandler(filename)

logging.RotatingFileHandler(filename, maxBytes=...)

logging.TimeRotatingFileHandler

logging.SysLogHandler(address=("localhost",port),...)

Web App Logging

Web Apps have some special concerns:

1. want to know IP address for events and activity

2. Web app may be deployed on many hosts, and may
not be persistent. How can you make separate logs
from web app?

3. How to aggregate logs from different parts of app?

Web App Logging

What events or activity should a web app log?

1. Login - username, IP address, date-time

2. Logout

3. Errors and exceptions

4. Deployment

5. User activity - at least all activity that changes
something

6. Invalid requests

Logging Done Wrong

Facebook stored 200 - 600 Million users'
passwords in plain text in log files for years.

https://krebsonsecurity.com/2019/03/facebook-stored-
hundreds-of-millions-of-user-passwords-in-plain-text-for-years/

What Info Should You Log When...

1. A login attempt (success or failure)

> username

> IP address

> date/time

2. A user submits a "vote" to the polls application.

> question and choice he voted

> which session or IP address he voted from

> date/time

> not username (to protect privacy)

Learn Python Logging

Logging HOWTO in the Python Library docs
 Use guide in the Advanced Tutorial.
 Don't use the Basic Tutorial (static log methods)
 https://docs.python.org/3/howto/logging.html

Logging - Logging Facility for Python
 in the Python library docs
 configuration, using formats, and handlers

How to Configure Logging
 https://docs.python-guide.org/writing/logging/
 3 ways: .INI file, a dict or JSON file, function calls

Learn Python Logging

Logging Cookbook

https://docs.python.org/3/howto/logging-cookbook.html

Django Logging

Django uses Python Logging, adds some "conveniences".

See: Django User Guide, section on Logging (only 10
pages with many examples)

Configuration: Django uses JSON-format text to configure
loggers in settings.py.

Configure Django Logging
LOGGING = {
 'disable_existing_loggers': False,
 'handlers': {
 'file': {
 'level': 'DEBUG',
 'class': 'logging.FileHandler',
 'filename': '/path/to/myapp.log',
 },
 'console': {
 'class': 'logging.StreamHandler'
 }
 }
 'loggers': {
 'myapp': {
 'handlers': ['console'],
 'level': 'INFO',
 'propagate': False,
 ...

Logging Advice

1. Configure the root logger, but don't use it directly.

2. For deployed web apps, log to console (12FactorApp)

3. Configure logger via config variables, not settings.py.
– OK to partially configure in settings.py but get

details from configuration file

Java Has More Log Levels

java.util.logging

SEVERE

WARNING

INFO

(CONFIG)

FINE - stupid name

FINER - stupider

FINEST - stupidest

OFF

ALL

Log4J & SLF4J

FATAL

ERROR

WARN

INFO

DEBUG

TRACE

OFF

ALL

Experience at KU

Chinese are Attacking My Server!

In /var/log/auth.log on se.cpe.ku.ac.th:

Nov 18 06:29:48 se sshd[6720]: Failed password for root
from 116.31.116.16 port 61430 ssh2

Nov 18 06:29:52 se sshd[6720]: message repeated 2
times: [Failed password for root from 116.31.116.16
port 61430 ssh2]

Someone is trying to login as root.

Where is 116.31.116.16?

Search Google...

116.31.116.16

116.31.116.16 | ChinaNet Guangdong Province Network |
AbuseIPDB

https://www.abuseipdb.com/check/116.31.116.16

116.31.116.16 has been reported 409 times. ... 116.31.116.16 was first
reported on December 3rd 2017 , and the most recent report was 4
hours ago .

IP List of Brute force attackers
https://report.cs.rutgers.edu/DROP/attackers

... 115.186.147.235 115.249.205.29 116.196.76.135 116.31.116.11 116.31.116.12
116.31.116.14 116.31.116.16 116.31.116.21 116.31.116.23 116.31.116.24 ...

The Anti Hacker Alliance™ fights against 116.31.116.20
https://anti-hacker-alliance.com/index.php?ip=116.31.116.20

116.31.116.x

The "Fix"

1. ssh was already configured to deny root login.
(hacker could not login as root even if he guessed
password.)

1. Add firewall rule to deny all traffic from IPs in China.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

