

Refactoring

Introduction,

Guidelines for How To,

and

ISP Refactoring Assignments

What is Refactoring?

Change the internal structure of code without
changing its external behavior.

Refactoring as a Discipline

A series of (usually) small changes that preserve
external functionality.

Based on an objective set of goals or criteria.

Purpose

The purpose:

to make software easier to understand or maintain.

In contrast to:

performance optimization doesn't change observable
behavior (except for speed) but isn't refactoring.

Refactoring Example

class Auction:

 def __init__(self, description):

 self.name = description

 self.bids = {"no bids": 0}

 self.active = False

 def bid(self, bidder, amount):

 """accept a bid if amount is greater than the best bid so far"""

 if self.active and amount > self.best_bid():

 self.bids[bidder] = amount

 def best_bid(self):

 return max(self.bids.values())

Change this
implementation

Same Behavior, Different Code

class Auction:

 def __init__(self, description):

 self.name = description

 self.max_bid = 0

 self.active = False

 ...

 def bid(self, bidder, amount):

 if self.active and amount >= self.max_bid:

 (self.max_bid, self.bidder) = (amount, bidder)

 def best_bid(self):

 return self.max_bid

Why Refactor?

Design changes during development

Your First Code isn't always Your Best Code

Software Evolves over Time

process - Iterative & Incremental Development

changing requirements - customer may change
or clarify requirements

discover a better solution - developers find a
better design or better way to implement

changing technology - newer, better libraries and
frameworks

We need to be able to adapt & improve code.

Continuous Improvement

Authors review and rewrite manuscripts.

Composers rewrite songs and musicals many,
many times before public performance.

Engineers prototype, analyze, and improve the
design of products.

What about computer software?

Refactoring: Signs

Duplicate code

Long methods

One class doing many things

Change causes ripple effects:
when you change something in one class you
have to make several changes elsewhere

Violations of OO design principles, like SRP,
Information Expert, or Separation of Concerns

Code is Hard to Understand or Modify

First Example: Pizza Shop

Github Classroom: Pizzashop assignment

Instructions and explanation are in project README.

Purpose:

1. Shows several common refactorings

2. Practice using IDE refactoring functions

 ...and experience their limitations

Before refactoring

You must have working tests.

Verify the code passes all tests.

Tests must cover the code you plan to refactor.

 ...use a code coverage tool to check this

Guidelines

 Write good tests first.

 Code should pass all tests.

 Refactor in small steps, run the tests after each
change.

 Don't add functionality while refactoring.

 Don't refactor while adding functionality.

Assignment: Movie Rental

From chapter 1 of Refactoring (Fowler).

A store rents movies to customers.

The rental charge depends on how long customer
borrows the movie and the type of movie.

New Release: $3 per day

Children's Movie: $1.5 for 3 days + $1.5/day after day 3

Normal Movie: $2 for 2 days + $1.5/day after day 2

The application should print a statement to standard out.

Frequent Renter Points

Customer earns 1 frequent renter points per rental for
ordinary and children's movies.

For new releases, customer gets 1 point for each day of
rental.

Movie Rental Domain Model

Get Familiar with the Code

Review the domain code.

https://github.com/jbrucker/movierental

What part looks like it could be designed or implemented
better?

First refactoring

Customer.statement() is long and complex.

Create a separate method for the block of code that
computes rental charge.

 what are parameters for this method?
 what does it return?

Run the tests.

Guidelines:
 find all variables used in the block
 if variable is not changed, pass it as a parameter
 if variable is changed, is it the result to return?
 avoid too many parameters

Extract Method

Motivation: extract a block of code as a method when
a) method is too long and complex,
b) code or logic is duplicated,
c) want to test the block of code separately.

Mechanics: see Refactoring book, p. 90.

Eclipse does this quite well.

For Eclipse to correctly identify the return value, you
need to include assignment of the result as part of
block of code you select.

Second Refactoring: Move Method

1. The amountForRental() method uses data about the
rental, but no data about the customer.

2. Its not really the customer's responsibility to know how
to compute rental charges.

These are signs that amountForRental() is in the wrong
class.

Move it to the Rental class.

Run the tests.

Move Method

Motivation: move a method to another class when
a) method is primarily used by another class, or several
other classes,
b) method uses data from another object, not this
object,
c) want to simplify a class that is doing too much.

(b) is also known as Information Expert principle.

Mechanics: see Refactoring book, p. 116.

Fowler suggests first copying the method to another class,
editing as needed, change name to suit the new context,
and change references to the new method.

Then, when code is working, delete the original method.

3rd Refactor: Query Method

The total charge is being summed in a loop.

Fowler recommends simplifying code by replacing this
with a "query method" that computes the total charge.

Catalog: "Replace Temp with Query"

4th: Replace Conditional Logic with
Polymorphism

switch(getMove().getPriceCode()) {

case Movie.REGULAR:

 . . .

 break;

case Movie.NEW_RELEASE:

 . . .

 break;

case Movie.CHILDRENS:

 . . .

Replace Conditional with
Polymorphism

1. Move getRentalCharge() to Movie.

2. Since rental charge depends on Movie type, you might
think to create subclasses:

 ChildrensMovie NewReleaseMovie

 but this is a bad idea. (Why?)

3. Instead, apply the State (or Strategy) Pattern.

 a) define an interface for Pricing

 b) write specific instances for each type of movie

 c) delegate to Pricing object

5th: Replace simple type with object

In Movie, what are those NEW_RELEASE, CHILDRENS,
and NORMAL constants for?

They are markers, but they don't do anything.

How about making them objects from a class or
enumeration?

Catalog of Refactorings

The Refactoring book contains a catalog of refactorings.
They are presented in a format like this:

Name Extract Method

Summary create a method from a block of code...

Motivation ...

Mechanics replace block of code with call to a method.
Variables used in the block but not changed
may become parameters, . . .

Example

Different Levels of Refactoring

From Code Complete, Ch 24

1. Data Level Refactoring

Replace magic number/strings with named constants.

2. Statement Level Refactoring

Introduce explanatory variable

3. Routine Level Refactoring

Extract a method

Different Levels

4. Class Implementation Refactoring

Move common code into a superclass or delegate

5. Class Interface Refactoring

Move a method from one class to another

6. System Level Refactoring

Provide Factory class instead of constructors

Learn Refactoring

refactoring.guru - everything under "Refactoring" is useful

http://www.math.uaa.alaska.edu/~afkjm/csce401/
handouts/refactoring.pdf

Resources

Refactoring by Martin Fowler (1999) and (2008).

– first 3 chapters are example and basics

– rest of book is patterns and special situations

– https://refactoring.com patterns from the book

Refactoring to Patterns by Kerievsky (2004)
– very short catalog

Code Complete 2E, Ch. 24: Refactoring
– good explanation of why and what to look for
– checklist: Reasons to Refactor,

Summary of Refactorings

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

