

Refactoring Review

Name these refactorings. If there are two
possible answers, then write the
name of either one refactoring.

The Refactoring Category is shown at the bottom.
https://refactoring.guru/refactoring/techniques

https://refactoring.guru/refactoring/techniques

#1

BEFORE
def normalize(text):

 """Reformat some text"""

 text = text.trim()

 text =

 text.replace('_', ' ')

 return text

AFTER
def normalize(text):

 """Reformat some text"""

 result = text.trim()

 result =

 result.replace('_',' ')

 return result

Refactoring Category: Composing Methods

#2 (two possible answers)

BEFORE
def roots(a, b, c):

 """Roots of Quadratic"""

 if b*b - 4*a*c >= 0:

 x1 = (-b +

 sqrt(b*b-4*a*c))/(2*a))

 x2 = (-b -

 sqrt(b*b-4*a*c))/(2*a))

 return (x1, x2)

 return None

AFTER
def roots(a, b, c):

 """Roots of Quadratic"""

 descrim = b*b - 4*a*c

 if descrim >= 0:

 descrim = sqrt(descrim)

 x1 = (-b + descrim)/(2*a)

 x2 = (-b - descrim)/(2*a)

 return (x1, x2)

 return None

Composing Methods

#3

BEFORE
def find(text: str):

 """Find text in file"""

 found = False

 line = None

 file = open("somefile")

 while not found:

 line = file.readline()

 if text in line:

 found = True

 file.close()

 return line

AFTER
def find(text: str):

 """Find text in file"""

 with open("somefile")

 as file:

 for line in file:

 if text in line:

 return line

 return None

Simplifying Conditional Expressions
(many students write code like on the left)

#4

BEFORE
chain calls to get title

title = rental.get_movie()\

 .get_title()

AFTER
Rental gets title from

movie and returns it.

Movie also has get_title

title = rental.get_title()

Moving Features Between Objects

#5

BEFORE
first = 'Bill'

last = 'Gates'

email = 'bill@msft.com'

print_person(
 first, last, email)

def print_person(*args):

 print(f"{args[0]}

 {args[1]}
 email <{args[2]}>")

AFTER
@dataclass

class Person:

 first: str

 last: str

 email: str

p = Person("Bill","Gates",...)

print_person(p)

def print_person(person):

 print(f"{person.first}

 {person.last}

 email <{person.email}>")

Simplifying Method Calls

#6

BEFORE
def print_rental(title,

 days_rented, price):
 print("{:20s} {:6d} {:f}"

 .format(title,

 days_rented,

 price))

Usage:

r = Rental("Frozen", 3)

print_rental(r.get_title(),

 r.get_days_rented(),

 r.get_price())

AFTER
def print_rental(r: Rental):

 print("{:20s} {:6d} {:f}"

 .format(

 r.get_title(),

 r.get_days_rented(),

 r.get_price()))

Usage:

r = Rental("Frozen", 3)

print_rental(r)

Simplifying Method Calls

#7

AFTER
def vote(question, choice):

 if not question.can_vote():

 messages.error(
 "voting not allowed")

 return redirect('polls:detail',..

 if choice not in \

 question.choice_set():

 messages.error("invalid ...")

 return redirect('polls:detail',..

 Vote.objects.create(

 user=user, question=...)

 return redirect('polls:result',...)

BEFORE
def vote(question, choice):

 if not question.can_vote():

 messages.error(
 "voting not allowed")

 elif choice not in

 question.choice_set():

 messages.error("invalid ...")

 else:

 Vote.objects.create(

 user=user, question=...)

 return redirect('polls:result')

 # if any error, redirect to
detail

 return
redirect('polls:detail',...

Simplifying Conditional Expressions

#8 (two possible answers)

BEFORE
def greet(name):

 if datetime.now().hour<12:

 print("Good morning",

 name)

 else:

 print("G'd afternoon",

 name)

AFTER
def greet(firstname):

 if is_morning():

 print("Good morning",

 name)

 else:

 print("G'd afternoon",

 name)

def is_morning() -> bool:

 return \

 datetime.now().hour < 12

1. Simplifying Conditional Expressions
2. Composing Methods

#9

BEFORE

game = Game(800, 600)

AFTER

CANVAS_WIDTH = 800

CANVAS_HEIGHT = 600

game = Game(CANVAS_WIDTH,

 CANVAS_HEIGHT)

Organizing Data

#10

BEFORE
Same code in many collections.

AFTER

Dealing with Generalization

#11: Why not move add(element) to Collection, too?

BEFORE
Same code in many collections.

AFTER

You Can't Generalize Everything

#12

BEFORE

class Stack(List):

 def push(self, e):

 super().append(e)

AFTER

class Stack:

 def push(self, e):

 self.list.append(e)

Dealing with Generalization

Why Not Stack extends List?

O-O Basics:
● A Stack is not a List. Fails the "is a" test.
● Liskov Substitution Principle - can't substitute Stack for List

Design Principles used:
● Prefer Composition over Inheritance, also called
● Prefer Delegation over Inheritance

Code Symptom:
● _______________ - Stack doesn't use most List methods

#13 (two possible answers)

BEFORE

def get_wages(self, type):

 if type == SALARIED:

 # return self.salary

 elif type == HOURLY:

 # return wage*hours

AFTER

1. Organizing Data
2. Simplifying Conditional Expressions

#14 Name Two Refactorings

BEFORE
class Rental:

 def get_price(self):

 if type == NEW_RELEASE:

 price = 3*self.days

 elif type == CHILDREN:

 price = 1.5 + \
 1.5*max(0, self.days-3)

 else:

 price = ...

 return price

AFTER
class Rental:

 days: int

 price_code: PriceCode

 def get_price(self):

 return self.price_code.\

 get_price(self.days)

class PriceCode(ABC):

 pass

class NewRelease(PriceCode):

 def get_price(self, days):

 return 3*days

1. Organizing Data, 2. Simplifying Conditional Expressions

#14 Hint

Answer is not Replace Type Code with Subclass

There are also classes (not shown to save space)

class ChildrensMovie(PriceCode):

 def get_price(self, days): ...

class RegularMovie(PriceCode):

 def get_price(self, days): ...

#15

BEFORE
SPADES = 1

HEARTS = 2

CLUBS = 3

DIAMONDS = 4

class Card:

 def __init__(self, value,
 suite: int):

 ...

c = Card(4, HEARTS)

AFTER
class Suite(Enum):

 SPADES = 1

 HEARTS = 2

 CLUBS = 3

 DIAMONDS = 4

class Card:

 def __init__(self, value,
 suite: Suite):

 ...

c = Card(4, Suite.HEARTS)

Organizing Data, but different refactoring from #12 - 14.

Can You Justify Your Refactorings?

For each refactoring, you should be able to:

● Explain the Benefits

● Be specific - no vague claims like "easier to ..."

Instead, state why and how something is "easier".

Imagine refactoring during a code review.

Can you explain to the team why you refactor?

Example: Extract Method

Benefits:

● method logic becomes clearer, which reduces errors
and improves maintainability

● the code you extract can be tested separately.
When it is embedded in another method, it might not
be testable.

● by reducing the amount of work a method is doing, it
gets closer to the goal of "1 method does 1 thing",
and make for more descriptive method name

● increase opportunity to reuse code and eliminate
duplicate code

Refactoring is Not Always this Simple

These examples are very simple
in order to fit on one slide.

Actual code is much more complex.

...and the more complex the code is,
the more it (probably) needs refactoring.

It will help to know
1) refactoring signs and symptoms,

2) design principles.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

