
Refactoring Signs & Patterns

String Literals & Magic Numbers

import tkinter as tk

frame = tk.Frame()

canvas = tk.Canvas(frame, width=480, height=400,

 sticky="nsew")

Use Named Constants

import tkinter as tk

CANVAS_HEIGHT = 400

CANVAS_WIDTH = 480

frame = tk.Frame()

canvas = tk.Canvas(frame,

 width=CANVAS_WIDTH, height=CANVAS_HEIGHT,

 sticky=tk.NSEW)

Nondescriptive & Vague Names

is the ball on-screen?

check = 0 < ball.x < 480 and 0 < ball.y < 400

if not check:

 ball.remove()

Rename Symbol

is the ball on-screen?

is_onscreen = 0 < ball.x < CANVAS_WIDTH and \

 0 < ball.y < CANVAS_HEIGHT

if not is_onscreen:

 ball.remove()

Rename Symbol

 Assign a more descriptive, meaningful name to a
variable, method, class, or package.

Motivation: make code easier to understand. If you find a
more descriptive name for a variable, method, class, or
package then change it.

Code evolves over time, The purpose of some piece of
code may change so the original name isn't quite right.

Mechanics: use an IDE's Refactor -> Rename feature to
consistently change the name. Don't use search and
replace, which may change unintended matches.

Long Method or
Doing More Than One Thing

@login_required
def vote(request, question_id: int):
 """Vote for a choice on a poll question."""
 try:
 question = Question.objects.get(id=question_id)
 except Question.DoesNotExist:
 ...
 selected_choice = ...
 # get user's vote or create a new vote
 try:
 vote = Vote.objects.get(user=user,
 choice__question=question)
 except Vote.DoesNotExist:
 vote = Vote(user=user) # make a new Vote
 vote.choice = selected_choice
 vote.save()

Extract Method

@login_required
def vote(request, question_id: int):
 """Vote for a choice on a poll question."""
 try:
 question = Question.objects.get(id=question_id)
 except Question.DoesNotExist:
 ...
 selected_choice = ...
 # get user's vote or create a new vote
 vote = get_vote_for_user(question=question, user=user)
 vote.choice = selected_choice
 vote.save()

Extract Method

 Extract a block of code as a separate method.

Motivation:
 a) method is long and difficult to understand, or
 b) method doing more than one thing, or
 c) a block of code can be used by several methods

Mechanics: move the code to a new method.
Any values needed should be passed as parameters.

Example: extract logic for computing movie rental price
from long "statement()" method. (Movie Rental)

Local Var Used Only Once

class Person:
 def __init__(self, name, national_id):
 self.name = name
 self.national_id = national_id

 def __eq__(self, other):
 if not isinstance(other, Person):
 return False
 matches = (self.name == other.name and
 self.national_id == other.national_id)
 return matches

Inline Temp

class Person:
 def __init__(self, name, national_id):
 self.name = name
 self.national_id = national_id

 def __eq__(self, other):
 if not isinstance(other, Person):
 return False
 return (self.name == other.name and
 self.national_id == other.national_id)

Inline Temp if it makes the code easier to read.

Inline Temp

 You have a local variable that is assigned to and then
used only once. The expression is not complicated.

Solution: Put the expression right where it is used,
without assigning it to a temp var.

Motivation:
a) assignment to temps makes code harder to read,
b) the assignment to temp is getting in the way of other
refactorings.

See Also: Introduce Explanatory Variable which is the
opposite of this!

Complex Expression

from datetime import datetime

if (13 <= datetime.now().hour <= 16 and

 datetime.now().isoweekday == 2):

 print("Study refactoring")

Introduce Explaining Variable

from datetime import datetime

is_tuesday = (datetime.now().isoweekday == 2)

isp_lab_time = is_tuesday and (13 <= datetime.now().hour <= 16)

if isp_lab_time:

 print("Study refactoring")

Introduce Explaining Variable

A complicated expression makes it hard to understand
the intent of the code.

Solution: Assign result of part of the expression to a local
variable whose name describes the meaning.

Motivation: clarify the meaning of a complex expression.

Mechanics: let the IDE do it!
Select the code to extract and choose Refactor -> Assign
to local variable or Refactor -> Extract local variable.

Move Method

 A method uses more members of another class than
members of it's own class.

Solution: Move it to the other class.

Motivation: reduces coupling and often makes the code
simpler and classes more coherent.

Mechanics: see references.

Example: computing price of a movie rental depends on
rental data, not customer info. So move it to the rental
class.

Replace Constructor with Creation Method

Some classes have multiple constructors and their
purpose is not clear.

Solution: Replace constructor with static method that
create objects, use a name that describe intention of the
method.

Motivation: makes creating objects easier to understand.

Mechanics: Define a static method (class method) that
creates and returns a new object.

You may have several such methods for different cases.

Refactoring Signs

Sign or signal that you should
consider refactoring.

Also called "code smells".*

The purpose of refactoring:

 Make this code easier to read or maintain.

* I don't like the term "code smells" -- it is subjective,
and refactoring signs are objective. Code doesn't have
a smell.

Name some "symptoms" or "signs"

Name some signs that code may need refactoring.

1. Duplicate logic or duplicate code.

2.

3.

4.

5.

6.

List of Symptoms

A good online list is:

https://blog.codinghorror.com/code-smells/

Chapter 3 of Refactoring book has longer explanation.

https://refactoring.guru also has a good list.

Duplicate Code or Duplicate Logic

The #1 symptom

Solutions:

Extract Method

Pull up Method

Define a method that performs the duplicate
code.

Other Symptoms

Long method

Large class - class with many methods and attributes

Incohesive class - class with many weakly related or
unrelated responsibilities

Long parameter list - more than 3 parameters

Temporary field - a class has an attribute that is used
only rarely, and can easily be recreated as needed.

Data Class

A class that is just a holder for data (like a 'struct' in C).

Doesn't have any responsibilities, just get/set methods.

Solution:

Look at how other classes are using the data class.

You may simplify the code by moving behavior to the
data class. Use the Move Method or Extract Method.

Eclipse Show References: Right click on class name and
choose References -> Project. Shows all places where
this class is used.

Python dataclass

Python 3.7 dataclass provides automatic
constructor and methods for classes that are
intended to be data "containers".

A data class is used as a container for related
data, or data + data specific methods.

from dataclasses import dataclass

@dataclass
class Coordinate:
 x: float
 y: float

Lazy Class

A step above Data Class.

Motivation: A lazy class doesn't do enough to justify its
existence.

Solution:

Either give the class something to do (Move Method)
or eliminate it.

Speculative Generality

"I think we might need this in the future".

Design for change is good.

But if it involves a lot of extra code or classes, be critical.

Symptoms: Abstract classes that don't do anything.
Interfaces with only 1 implementation.

Solution:

Collapse class hierarchy by moving behavior.

Exercise

Find the refactoring symptoms in this code.

Suggest refactorings.

https://vivekagarwal.wordpress.com/2008/06/21/code-
smelling-exercise/

Resources

Refactoring, 2nd Edn by Martin Fowler (2018).
The first 3 chapters cover the fundamentals.

https://refactoring.guru - refactoring symptoms,
techniques, and examples

Refactoring Symptoms & Solutions

List of "code smells"

 https://blog.codinghorror.com/code-smells/

Code Smells Cheat Sheet

http://www.industriallogic.com/wp-content/
uploads/2005/09/smellstorefactorings.pdf

and blog post "Smells to Refactorings"

 https://www.industriallogic.com/blog/smells-
to-refactorings-cheatsheet/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

