

Separate Configuration from Code

Configuration in Code

Programmers sometimes "hard code" configuration data in
code. Using the example below:

1. What 'configuration data' is being stored in code?

2. Why is this a bad idea?

def connect_to_database():
 """Open a connection to the database.
 Returns: connection to database.
 """
 conn = MySQLdb.connect('pollsdb',
 user='polls',
 password='stupid')
 return conn

Python has a standard DB-API that supports most databases.

Problems with Configuration in Code

1. Effort to modify when configuration must change

– and you may make mistakes or miss
something

2. Cannot deploy same code in different environments.

– Example: a "test" server and "production"
server

3. Possibly insecure

– exposes user/password, OAuth credentials,
etc.

Where to Put Configuration Data?

1. In a file.

Properties file (plain text) or similar

XML or JSON file

2. In the environment.

Set environment vars manually or using a script.

Cloud services like Heroku have web form for this.

What About Django?
The Good: All the configuration data is in one file

The Bad: config is still in code. You have to modify it for
each different deployment. Must not check it in to Github!

import os, sys
SECRET_KEY = 'wjtc3c@k5m!3^0m3dq=e^jff_t%q*blm'

DEBUG = True

ALLOWED_HOSTS = ['*']

INSTALLED_APPS = [
 'polls',
 'django.contrib.admin',
 'django.contrib.auth',
 ...
]

Exercise

Look in your own settings.py file.

Find at least 4 settings that are either:

1) confidential - should not be visible to others

2) may need to change for different deployments, such
as running on your own computer vs a server

Exercise

Did you write down at least 4 variables in settings.py
that should be externalized?

Or are you too lazy?

If you didn't do it,
then no point in reading the rest of these slides.

Django Settings

This is confidential so should be externalized
SECRET_KEY = 'wjtc3c@k5m!3^0m3dq=e^jff_t%q*blm'

Only enable DEBUG for development.
Should be False when app is deployed.
DEBUG = True

For development, only allow localhost
ALLOWED_HOSTS = ['*']

Different database for development and deployed
DATABASES = { ...
 }

For production, an external server for static
content is more efficient than Django.
STATIC_URL = '/static/'

The 12-Factor App

Heroku recommends 12 characteristics of maintainable
web applications.

#3. Store configuration in the environment

3. Store Config in the environment

"Config" is everything that is likely to vary between
deployments (staging, production, local dev env.).

database handles: DATABASE_URL = ...

credentials for other services your app uses

anything likely to change

OK to use a configuration file instead of environment...
if there is a way to specify a different configuration file w/
o changing the code.

Using Environment Variables
Original settings.py:

SECRET_KEY = 'wjtc3c@k5m!3^0m3dq=e'

1. Create an environment variable for the secret key:

Linux (no space around =)
export SECRET_KEY='wjtc3c@k5m!3^0m3dq=e'
Windows
set SECRET_KEY = 'wjtc3c@k5m!3^0m3dq=e'

2. Modified settings.py using an environment variable:

import os
SECRET_KEY = os.getenv('SECRET_KEY')

Saving Environment Variables

The value of an environment variable lasts only for the
duration of your current terminal or shell session.

To save & restore environment, put the values in a file
and "source" the file.

linux or MacOS
source env.sh

export SECRET_KEY='wjtc3c@k5m!3^0m3dq=e'
export DEBUG=True

Some shells use "." instead of "source": . env.sh
This file (env.sh) should be in your project directory
and not committed to git.

Better Solutions

Using os.getenv() works, but env variables are always
interpreted as strings, and you have to remember to
"source" the data file before running Django.

There are 2 Python packages that do type conversion for
you and automatically look for values in either a file or
the environment:

python-decouple - flexible, general purpose package

django-environ - adds convenience methods for
converting strings to types used in settings.py

python-decouple has better documentation.

Using python-decouple
python-decouple has a 'config' function that imports named
values from the environment or a file.

settings.py
from decouple import config

SECRET_KEY = config('SECRET_KEY', default="secret")
DEBUG = config('DEBUG', cast=bool, default=False)

config() will set 'SECRET_KEY' and 'DEBUG' using either
(a) environment variables or (b) values in a file named .env.
For example:

.env file. values do not need quotes.
SECRET_KEY = wjtc3c@k5m!3^0m3dq=e
DEBUG = False

type cast and default values
You can specify a type cast and default value.

The default type is string.

DEBUG = config('DEBUG', cast=bool, default=False)

Database Connection Info
Before externalization:

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.postgresql',
 'NAME': 'polls',
 'USER': 'padmin',
 'PASSWORD': 'secret',
 'HOST': 'localhost',
 'PORT': 5432,
 }
}

Externalize Database Connection
Using "config" for database parameters is clumsy:

DATABASES = {
 'default': {
 'ENGINE': config('DB_ENGINE'),
 'NAME': config('DB_NAME'),
 'USER': config('DB_USER'),
 'PASSWORD': config('DB_PASSWORD'),
 'HOST': config('DB_HOST'),
 'PORT': config('DB_PORT', cast=int),
 }
}

File: .env
DB_ENGINE = django.db.backends.postgresql
DB_NAME = polls
DB_USER = padmin
DB_PASSWORD = secret
DB_HOST = 211.compute-1.amazonaws.com
DB_PORT = 5432

dj_database_url.parse()

dj_database_url (add-on) can create all the Django database
parameters (dict) from a single URL. It is much simpler!

In settings.py use:

.env file.
DATABASE_URL=postgres://padmin:secret@localhost:5432/polls

DATABASES = {
 'default': config('DATABASE_URL',
 cast=dj_database_url.parse)
}

In the .env file or environment you write a single URL:

Properties File (Java example)

Don't commit this file to Git!

jdbc.url =
jdbc:mysql://cloud.google.com/xxxx

jdbc.user = pollsadmin

jdbc.password = secret

Plain text file containing key-values in the form:

 key = value

You do not need quotes around the value

Commonly used in many programming languages.

Read a Properties File (Java)

InputStream in = new FileInputStream("myapp.conf");

Properties props = new Properties();

props.load(in); // read properties from the file

// Get the database url using its key

// in the properties file

String url = props.getProperty("jdbc.url");

System.out.println("The database URL is " + url);

Reading a properties file creates a dictionary or map of
keys to values.

In Java:

Reference

Externalize your Configuration

https://reflectoring.io/externalize-
configuration/

The 12-Factor App by Heroku, #3 is Configuration.

https://12factor.net/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

