
I n a fascinating book that provides an economist’s view of software and soft-
ware engineering, Howard Baetjer, Jr. [Bae98], comments on the software
process:

Because software, like all capital, is embodied knowledge, and because that knowl-

edge is initially dispersed, tacit, latent, and incomplete in large measure, software de-

velopment is a social learning process. The process is a dialogue in which the

knowledge that must become the software is brought together and embodied in the

software. The process provides interaction between users and designers, between

users and evolving tools, and between designers and evolving tools [technology]. It is

an iterative process in which the evolving tool itself serves as the medium for com-

munication, with each new round of the dialogue eliciting more useful knowledge

from the people involved.

Indeed, building computer software is an iterative social learning process, and
the outcome, something that Baetjer would call “software capital,” is an embodi-
ment of knowledge collected, distilled, and organized as the process is conducted.

30

C H A P T E R

2 PROCESS
MODELS

K E Y
C O N C E P T S

component-based
development50
concurrent models . .48
evolutionary process
models 42
formal methods
model51
generic process
model31
incremental process
models 41
personal software
process57
prescriptive process
models 38
process patterns . . .35
task set 34
team software
process58
Unified Process 53

What is it? When you work to build
a product or system, it’s important to
go through a series of predictable
steps—a road map that helps you

create a timely, high-quality result. The road map
that you follow is called a “software process.”

Who does it? Software engineers and their
managers adapt the process to their needs and
then follow it. In addition, the people who have
requested the software have a role to play in the
process of defining, building, and testing it.

Why is it important? Because it provides
stability, control, and organization to an activity
that can, if left uncontrolled, become quite
chaotic. However, a modern software engineer-
ing approach must be “agile.” It must demand
only those activities, controls, and work products
that are appropriate for the project team and the
product that is to be produced.

Q U I C K
L O O K

What are the steps? At a detailed level, the
process that you adopt depends on the software
that you’re building. One process might be ap-
propriate for creating software for an aircraft
avionics system, while an entirely different process
would be indicated for the creation of a website.

What is the work product? From the point of
view of a software engineer, the work products
are the programs, documents, and data that are
produced as a consequence of the activities and
tasks defined by the process.

How do I ensure that I’ve done it right?
There are a number of software process
assessment mechanisms that enable organiza-
tions to determine the “maturity” of their soft-
ware process. However, the quality, timeliness,
and long-term viability of the product you
build are the best indicators of the efficacy of
the process that you use.

pre75977_ch02.qxd 11/27/08 3:21 PM Page 30

CHAPTER 2 PROCESS MODELS 31

But what exactly is a software process from a technical point of view? Within the
context of this book, I define a software process as a framework for the activities, ac-
tions, and tasks that are required to build high-quality software. Is “process” syn-
onymous with software engineering? The answer is “yes and no.” A software process
defines the approach that is taken as software is engineered. But software engi-
neering also encompasses technologies that populate the process—technical meth-
ods and automated tools.

More important, software engineering is performed by creative, knowledgeable
people who should adapt a mature software process so that it is appropriate for the
products that they build and the demands of their marketplace.

2.1 A GENERIC PROCESS MODEL

In Chapter 1, a process was defined as a collection of work activities, actions, and

tasks that are performed when some work product is to be created. Each of these

activities, actions, and tasks reside within a framework or model that defines their

relationship with the process and with one another.

The software process is represented schematically in Figure 2.1. Referring to the

figure, each framework activity is populated by a set of software engineering actions.

Each software engineering action is defined by a task set that identifies the work

tasks that are to be completed, the work products that will be produced, the quality

assurance points that will be required, and the milestones that will be used to indi-

cate progress.

As I discussed in Chapter 1, a generic process framework for software engineer-

ing defines five framework activities—communication, planning, modeling,

construction, and deployment. In addition, a set of umbrella activities—project

tracking and control, risk management, quality assurance, configuration manage-

ment, technical reviews, and others—are applied throughout the process.

You should note that one important aspect of the software process has not

yet been discussed. This aspect—called process flow—describes how the frame-

work activities and the actions and tasks that occur within each framework

activity are organized with respect to sequence and time and is illustrated in

Figure 2.2.

A linear process flow executes each of the five framework activities in sequence,

beginning with communication and culminating with deployment (Figure 2.2a). An

iterative process flow repeats one or more of the activities before proceeding to the

next (Figure 2.2b). An evolutionary process flow executes the activities in a “circular”

manner. Each circuit through the five activities leads to a more complete version

of the software (Figure 2.2c). A parallel process flow (Figure 2.2d) executes one or

more activities in parallel with other activities (e.g., modeling for one aspect of the

software might be executed in parallel with construction of another aspect of the

software).

The hierarchy of
technical work within
the software process is
activities,
encompassing actions,
populated by tasks.

uote:

“We think that
software
developers are
missing a vital
truth: most
organizations don’t
know what they
do. They think they
know, but they
don’t know.”

Tom DeMarco

pre75977_ch02.qxd 11/27/08 3:21 PM Page 31

2.1.1 Defining a Framework Activity

Although I have described five framework activities and provided a basic defini-

tion of each in Chapter 1, a software team would need significantly more infor-

mation before it could properly execute any one of these activities as part of the

software process. Therefore, you are faced with a key question: What actions are

appropriate for a framework activity, given the nature of the problem to be solved, the

characteristics of the people doing the work, and the stakeholders who are sponsor-

ing the project?

32 PART ONE THE SOFTWARE PROCESS

Process framework

Umbrella activities

framework activity # 1

Task sets
work tasks
work products
quality assurance points
project milestones

software engineering action #1.1

Task sets
work tasks
work products
quality assurance points
project milestones

software engineering action #1.k

framework activity # n

Task sets
work tasks
work products
quality assurance points
project milestones

software engineering action #n.1

Task sets
work tasks
work products
quality assurance points
project milestones

software engineering action #n.m

Software process
FIGURE 2.1

A software
process
framework

pre75977_ch02.qxd 11/27/08 3:21 PM Page 32

CHAPTER 2 PROCESS MODELS 33

(d) Parallel process flow

(c) Evolutionary process flow

Communication Planning Modeling

(a) Linear process flow

Construction Deployment

Communication Planning Modeling Construction Deployment

Construction Deployment

Communication Planning

Modeling Time

(b) Iterative process flow

Planning
Modeling

ConstructionDeploymentIncrement
released

Communication

FIGURE 2.2 Process flow

For a small software project requested by one person (at a remote location) with

simple, straightforward requirements, the communication activity might encompass

little more than a phone call with the appropriate stakeholder. Therefore, the only

necessary action is phone conversation, and the work tasks (the task set) that this

action encompasses are:

1. Make contact with stakeholder via telephone.

2. Discuss requirements and take notes.

How does a
framework

activity change as
the nature of the
project changes?

?

pre75977_ch02.qxd 11/27/08 3:21 PM Page 33

3. Organize notes into a brief written statement of requirements.

4. E-mail to stakeholder for review and approval.

If the project was considerably more complex with many stakeholders, each with

a different set of (sometime conflicting) requirements, the communication activity

might have six distinct actions (described in Chapter 5): inception, elicitation, elabo-

ration, negotiation, specification, and validation. Each of these software engineering

actions would have many work tasks and a number of distinct work products.

2.1.2 Identifying a Task Set

Referring again to Figure 2.1, each software engineering action (e.g., elicitation, an

action associated with the communication activity) can be represented by a number

of different task sets—each a collection of software engineering work tasks, related

work products, quality assurance points, and project milestones. You should choose

a task set that best accommodates the needs of the project and the characteristics of

your team. This implies that a software engineering action can be adapted to the spe-

cific needs of the software project and the characteristics of the project team.

34 PART ONE THE SOFTWARE PROCESS

Task Set
A task set defines the actual work to be done
to accomplish the objectives of a software

engineering action. For example, elicitation (more
commonly called “requirements gathering”) is an
important software engineering action that occurs during
the communication activity. The goal of requirements
gathering is to understand what various stakeholders want
from the software that is to be built.

For a small, relatively simple project, the task set for
requirements gathering might look like this:

1. Make a list of stakeholders for the project.
2. Invite all stakeholders to an informal meeting.
3. Ask each stakeholder to make a list of features and

functions required.
4. Discuss requirements and build a final list.
5. Prioritize requirements.
6. Note areas of uncertainty.

For a larger, more complex software project, a
different task set would be required. It might encompass
the following work tasks:

1. Make a list of stakeholders for the project.
2. Interview each stakeholder separately to determine

overall wants and needs.

3. Build a preliminary list of functions and features
based on stakeholder input.

4. Schedule a series of facilitated application
specification meetings.

5. Conduct meetings.
6. Produce informal user scenarios as part of each

meeting.
7. Refine user scenarios based on stakeholder

feedback.
8. Build a revised list of stakeholder requirements.
9. Use quality function deployment techniques to

prioritize requirements.
10. Package requirements so that they can be delivered

incrementally.
11. Note constraints and restrictions that will be placed

on the system.
12. Discuss methods for validating the system.

Both of these task sets achieve “requirements gathering,”
but they are quite different in their depth and formality. The
software team chooses the task set that will allow it to
achieve the goal of each action and still maintain quality
and agility.

INFO

Different projects
demand different task
sets. The software
team chooses the task
set based on problem
and project
characteristics.

pre75977_ch02.qxd 11/27/08 3:21 PM Page 34

2.1.3 Process Patterns

Every software team encounters problems as it moves through the software process.

It would be useful if proven solutions to these problems were readily available to the

team so that the problems could be addressed and resolved quickly. A process

pattern1 describes a process-related problem that is encountered during software en-

gineering work, identifies the environment in which the problem has been encoun-

tered, and suggests one or more proven solutions to the problem. Stated in more

general terms, a process pattern provides you with a template [Amb98]—a consis-

tent method for describing problem solutions within the context of the software

process. By combining patterns, a software team can solve problems and construct

a process that best meets the needs of a project.

Patterns can be defined at any level of abstraction.2 In some cases, a pattern might

be used to describe a problem (and solution) associated with a complete process

model (e.g., prototyping). In other situations, patterns can be used to describe a prob-

lem (and solution) associated with a framework activity (e.g., planning) or an action

within a framework activity (e.g., project estimating).

Ambler [Amb98] has proposed a template for describing a process pattern:

Pattern Name. The pattern is given a meaningful name describing it

within the context of the software process (e.g., TechnicalReviews).

Forces. The environment in which the pattern is encountered and the

issues that make the problem visible and may affect its solution.

Type. The pattern type is specified. Ambler [Amb98] suggests three types:

1. Stage pattern—defines a problem associated with a framework activity for

the process. Since a framework activity encompasses multiple actions and

work tasks, a stage pattern incorporates multiple task patterns (see the fol-

lowing) that are relevant to the stage (framework activity). An example of a

stage pattern might be EstablishingCommunication. This pattern would

incorporate the task pattern RequirementsGathering and others.

2. Task pattern—defines a problem associated with a software engineering

action or work task and relevant to successful software engineering

practice (e.g., RequirementsGathering is a task pattern).

3. Phase pattern—define the sequence of framework activities that occurs

within the process, even when the overall flow of activities is iterative

in nature. An example of a phase pattern might be SpiralModel or

Prototyping.3

CHAPTER 2 PROCESS MODELS 35

1 A detailed discussion of patterns is presented in Chapter 12.

2 Patterns are applicable to many software engineering activities. Analysis, design, and testing

patterns are discussed in Chapters 7, 9, 10, 12, and 14. Patterns and “antipatterns” for project

management activities are discussed in Part 4 of this book.

3 These phase patterns are discussed in Section 2.3.3.

What is a
process

pattern?
?

uote:

“The repetition of
patterns is quite a
different thing than
the repetition of
parts. Indeed, the
different parts will
be unique because
the patterns are the
same.”

Christopher
Alexander

A pattern template
provides a consistent
means for describing a
pattern.

pre75977_ch02.qxd 11/27/08 3:21 PM Page 35

Initial context. Describes the conditions under which the pattern applies.

Prior to the initiation of the pattern: (1) What organizational or team-related ac-

tivities have already occurred? (2) What is the entry state for the process?

(3) What software engineering information or project information already exists?

For example, the Planning pattern (a stage pattern) requires that (1) cus-

tomers and software engineers have established a collaborative communi-

cation; (2) successful completion of a number of task patterns [specified] for

the Communication pattern has occurred; and (3) the project scope, basic

business requirements, and project constraints are known.

Problem. The specific problem to be solved by the pattern.

Solution. Describes how to implement the pattern successfully. This sec-

tion describes how the initial state of the process (that exists before the pat-

tern is implemented) is modified as a consequence of the initiation of the

pattern. It also describes how software engineering information or project

information that is available before the initiation of the pattern is transformed

as a consequence of the successful execution of the pattern.

Resulting Context. Describes the conditions that will result once the pat-

tern has been successfully implemented. Upon completion of the pattern:

(1) What organizational or team-related activities must have occurred?

(2) What is the exit state for the process? (3) What software engineering

information or project information has been developed?

Related Patterns. Provide a list of all process patterns that are directly

related to this one. This may be represented as a hierarchy or in some other

diagrammatic form. For example, the stage pattern Communication

encompasses the task patterns: ProjectTeam, CollaborativeGuidelines,

ScopeIsolation, RequirementsGathering, ConstraintDescription, and

ScenarioCreation.

Known Uses and Examples. Indicate the specific instances in which the

pattern is applicable. For example, Communication is mandatory at the

beginning of every software project, is recommended throughout the software

project, and is mandatory once the deployment activity is under way.

Process patterns provide an effective mechanism for addressing problems asso-

ciated with any software process. The patterns enable you to develop a hierarchical

process description that begins at a high level of abstraction (a phase pattern). The

description is then refined into a set of stage patterns that describe framework

activities and are further refined in a hierarchical fashion into more detailed task

patterns for each stage pattern. Once process patterns have been developed, they

can be reused for the definition of process variants—that is, a customized process

model can be defined by a software team using the patterns as building blocks for

the process model.

36 PART ONE THE SOFTWARE PROCESS

WebRef
Comprehensive
resources on process
patterns can be found
at www.
ambysoft.com/
processPatternsPage
.html.

pre75977_ch02.qxd 11/27/08 3:21 PM Page 36

2.2 PROCESS ASSESSMENT AND IMPROVEMENT

The existence of a software process is no guarantee that software will be delivered

on time, that it will meet the customer’s needs, or that it will exhibit the technical

characteristics that will lead to long-term quality characteristics (Chapters 14 and

16). Process patterns must be coupled with solid software engineering practice

(Part 2 of this book). In addition, the process itself can be assessed to ensure that it

meets a set of basic process criteria that have been shown to be essential for a suc-

cessful software engineering.4

A number of different approaches to software process assessment and

improvement have been proposed over the past few decades:

Standard CMMI Assessment Method for Process Improvement

(SCAMPI)—provides a five-step process assessment model that incorporates

five phases: initiating, diagnosing, establishing, acting, and learning. The

SCAMPI method uses the SEI CMMI as the basis for assessment [SEI00].

CHAPTER 2 PROCESS MODELS 37

4 The SEI’s CMMI [CMM07] describes the characteristics of a software process and the criteria for a

successful process in voluminous detail.

Assessment attempts to
understand the current
state of the software
process with the intent
of improving it.

What formal
techniques

are available for
assessing the
software process?

?

INFO

An Example Process Pattern
The following abbreviated process pattern
describes an approach that may be applicable

when stakeholders have a general idea of what must be
done but are unsure of specific software requirements.

Pattern name. RequirementsUnclear

Intent. This pattern describes an approach for building a
model (a prototype) that can be assessed iteratively by
stakeholders in an effort to identify or solidify software
requirements.

Type. Phase pattern.

Initial context. The following conditions must be met
prior to the initiation of this pattern: (1) stakeholders have
been identified; (2) a mode of communication between
stakeholders and the software team has been established;
(3) the overriding software problem to be solved has been
identified by stakeholders; (4) an initial understanding of
project scope, basic business requirements, and project
constraints has been developed.

Problem. Requirements are hazy or nonexistent, yet
there is clear recognition that there is a problem to be

solved, and the problem must be addressed with a
software solution. Stakeholders are unsure of what they
want; that is, they cannot describe software requirements
in any detail.

Solution. A description of the prototyping process
would be presented here and is described later in
Section 2.3.3.

Resulting context. A software prototype that identifies
basic requirements (e.g., modes of interaction,
computational features, processing functions) is approved
by stakeholders. Following this, (1) the prototype may
evolve through a series of increments to become the
production software or (2) the prototype may be discarded
and the production software built using some other process
pattern.

Related patterns. The following patterns are related to
this pattern: CustomerCommunication,
IterativeDesign, IterativeDevelopment,
CustomerAssessment, RequirementExtraction.

Known uses and examples. Prototyping is
recommended when requirements are uncertain.

pre75977_ch02.qxd 11/27/08 3:21 PM Page 37

CMM-Based Appraisal for Internal Process Improvement (CBA IPI)—

provides a diagnostic technique for assessing the relative maturity of a

software organization; uses the SEI CMM as the basis for the assessment

[Dun01].

SPICE (ISO/IEC15504)—a standard that defines a set of requirements for

software process assessment. The intent of the standard is to assist organi-

zations in developing an objective evaluation of the efficacy of any defined

software process [ISO08].

ISO 9001:2000 for Software—a generic standard that applies to any or-

ganization that wants to improve the overall quality of the products, systems,

or services that it provides. Therefore, the standard is directly applicable to

software organizations and companies [Ant06].

A more detailed discussion of software assessment and process improvement

methods is presented in Chapter 30.

2.3 PRESCRIPTIVE PROCESS MODELS

Prescriptive process models were originally proposed to bring order to the chaos

of software development. History has indicated that these traditional models

have brought a certain amount of useful structure to software engineering work and

have provided a reasonably effective road map for software teams. However, software

engineering work and the product that it produces remain on “the edge of chaos.”

In an intriguing paper on the strange relationship between order and chaos in the

software world, Nogueira and his colleagues [Nog00] state

The edge of chaos is defined as “a natural state between order and chaos, a grand com-

promise between structure and surprise” [Kau95]. The edge of chaos can be visualized as

an unstable, partially structured state. . . . It is unstable because it is constantly attracted

to chaos or to absolute order.

We have the tendency to think that order is the ideal state of nature. This could be a mis-

take. Research . . . supports the theory that operation away from equilibrium generates cre-

ativity, self-organized processes, and increasing returns [Roo96]. Absolute order means the

absence of variability, which could be an advantage under unpredictable environments.

Change occurs when there is some structure so that the change can be organized, but not

so rigid that it cannot occur. Too much chaos, on the other hand, can make coordination

and coherence impossible. Lack of structure does not always mean disorder.

The philosophical implications of this argument are significant for software engineer-

ing. If prescriptive process models5 strive for structure and order, are they inappropri-

ate for a software world that thrives on change? Yet, if we reject traditional process

38 PART ONE THE SOFTWARE PROCESS

5 Prescriptive process models are sometimes referred to as “traditional” process models.

uote:

“Software
organizations have
exhibited
significant
shortcomings in
their ability to
capitalize on the
experiences gained
from completed
projects.”

NASA

uote:

“If the process is
right, the results
will take care of
themselves.”

Takashi Osada

pre75977_ch02.qxd 11/27/08 3:21 PM Page 38

models (and the order they imply) and replace them with something less structured,

do we make it impossible to achieve coordination and coherence in software work?

There are no easy answers to these questions, but there are alternatives available

to software engineers. In the sections that follow, I examine the prescriptive process

approach in which order and project consistency are dominant issues. I call them

“prescriptive” because they prescribe a set of process elements—framework activi-

ties, software engineering actions, tasks, work products, quality assurance, and

change control mechanisms for each project. Each process model also prescribes a

process flow (also called a work flow)—that is, the manner in which the process

elements are interrelated to one another.

All software process models can accommodate the generic framework activities

described in Chapter 1, but each applies a different emphasis to these activities and

defines a process flow that invokes each framework activity (as well as software

engineering actions and tasks) in a different manner.

2.3.1 The Waterfall Model

There are times when the requirements for a problem are well understood—when

work flows from communication through deployment in a reasonably linear fash-

ion. This situation is sometimes encountered when well-defined adaptations or en-

hancements to an existing system must be made (e.g., an adaptation to accounting

software that has been mandated because of changes to government regulations). It

may also occur in a limited number of new development efforts, but only when

requirements are well defined and reasonably stable.

The waterfall model, sometimes called the classic life cycle, suggests a systematic,

sequential approach6 to software development that begins with customer specifica-

tion of requirements and progresses through planning, modeling, construction, and

deployment, culminating in ongoing support of the completed software (Figure 2.3).

A variation in the representation of the waterfall model is called the V-model.

Represented in Figure 2.4, the V-model [Buc99] depicts the relationship of quality

CHAPTER 2 PROCESS MODELS 39

Communication
 project initiation
 requirements gathering

Planning
 estimating
 scheduling
 tracking

Modeling
 analysis
 design

Deployment
 delivery
 support
 feedback

Construction
 code
 test

FIGURE 2.3 The waterfall model

6 Although the original waterfall model proposed by Winston Royce [Roy70] made provision for

“feedback loops,” the vast majority of organizations that apply this process model treat it as if it

were strictly linear.

Prescriptive process
models define a
prescribed set of
process elements and
a predictable process
work flow.

pre75977_ch02.qxd 11/27/08 3:21 PM Page 39

assurance actions to the actions associated with communication, modeling, and

early construction activities. As a software team moves down the left side of the V,

basic problem requirements are refined into progressively more detailed and techni-

cal representations of the problem and its solution. Once code has been generated,

the team moves up the right side of the V, essentially performing a series of tests

(quality assurance actions) that validate each of the models created as the team

moved down the left side.7 In reality, there is no fundamental difference between the

classic life cycle and the V-model. The V-model provides a way of visualizing how

verification and validation actions are applied to earlier engineering work.

The waterfall model is the oldest paradigm for software engineering. However,

over the past three decades, criticism of this process model has caused even ardent

supporters to question its efficacy [Han95]. Among the problems that are sometimes

encountered when the waterfall model is applied are:

1. Real projects rarely follow the sequential flow that the model proposes.

Although the linear model can accommodate iteration, it does so indirectly.

As a result, changes can cause confusion as the project team proceeds.

40 PART ONE THE SOFTWARE PROCESS

7 A detailed discussion of quality assurance actions is presented in Part 3 of this book.

The V-model illustrates
how verification and
validation actions are
associated with earlier
engineering actions.

Why does
the waterfall

model sometimes
fail?

?

Code
generation

Architectural
design

Component
design

Requirements
modeling

Acceptance
testing

System
testing

Integration
testing

Unit
testing

Executable
software

FIGURE 2.4

The V-model

pre75977_ch02.qxd 11/27/08 3:21 PM Page 40

2. It is often difficult for the customer to state all requirements explicitly. The

waterfall model requires this and has difficulty accommodating the natural

uncertainty that exists at the beginning of many projects.

3. The customer must have patience. A working version of the program(s) will

not be available until late in the project time span. A major blunder, if unde-

tected until the working program is reviewed, can be disastrous.

In an interesting analysis of actual projects, Bradac [Bra94] found that the linear

nature of the classic life cycle leads to “blocking states” in which some project team

members must wait for other members of the team to complete dependent tasks. In

fact, the time spent waiting can exceed the time spent on productive work! The

blocking states tend to be more prevalent at the beginning and end of a linear

sequential process.

Today, software work is fast-paced and subject to a never-ending stream of

changes (to features, functions, and information content). The waterfall model is

often inappropriate for such work. However, it can serve as a useful process model

in situations where requirements are fixed and work is to proceed to completion in

a linear manner.

2.3.2 Incremental Process Models

There are many situations in which initial software requirements are reasonably well

defined, but the overall scope of the development effort precludes a purely linear

process. In addition, there may be a compelling need to provide a limited set of soft-

ware functionality to users quickly and then refine and expand on that functionality

in later software releases. In such cases, you can choose a process model that is

designed to produce the software in increments.

The incremental model combines elements of linear and parallel process flows

discussed in Section 2.1. Referring to Figure 2.5, the incremental model applies linear

sequences in a staggered fashion as calendar time progresses. Each linear sequence

produces deliverable “increments” of the software [McD93] in a manner that is sim-

ilar to the increments produced by an evolutionary process flow (Section 2.3.3).

For example, word-processing software developed using the incremental para-

digm might deliver basic file management, editing, and document production func-

tions in the first increment; more sophisticated editing and document production

capabilities in the second increment; spelling and grammar checking in the third in-

crement; and advanced page layout capability in the fourth increment. It should be

noted that the process flow for any increment can incorporate the prototyping

paradigm.

When an incremental model is used, the first increment is often a core product.

That is, basic requirements are addressed but many supplementary features (some

known, others unknown) remain undelivered. The core product is used by the cus-

tomer (or undergoes detailed evaluation). As a result of use and/or evaluation, a

CHAPTER 2 PROCESS MODELS 41

uote:

“Too often,
software work
follows the first law
of bicycling: No
matter where
you’re going, it’s
uphill and against
the wind.”

Author unknown

The incremental model
delivers a series of
releases, called
increments, that
provide progressively
more functionality for
the customer as each
increment is delivered.

Your customer
demands delivery by a
date that is impossible
to meet. Suggest deliv-
ering one or more
increments by that
date and the rest of
the software (addi-
tional increments)
later.

pre75977_ch02.qxd 11/27/08 3:21 PM Page 41

plan is developed for the next increment. The plan addresses the modification of the

core product to better meet the needs of the customer and the delivery of additional

features and functionality. This process is repeated following the delivery of each

increment, until the complete product is produced.

The incremental process model focuses on the delivery of an operational product

with each increment. Early increments are stripped-down versions of the final prod-

uct, but they do provide capability that serves the user and also provide a platform

for evaluation by the user.8

Incremental development is particularly useful when staffing is unavailable for a

complete implementation by the business deadline that has been established for the

project. Early increments can be implemented with fewer people. If the core product

is well received, then additional staff (if required) can be added to implement the next

increment. In addition, increments can be planned to manage technical risks. For ex-

ample, a major system might require the availability of new hardware that is under

development and whose delivery date is uncertain. It might be possible to plan early

increments in a way that avoids the use of this hardware, thereby enabling partial

functionality to be delivered to end users without inordinate delay.

2.3.3 Evolutionary Process Models

Software, like all complex systems, evolves over a period of time. Business and prod-

uct requirements often change as development proceeds, making a straight line path

to an end product unrealistic; tight market deadlines make completion of a compre-

hensive software product impossible, but a limited version must be introduced to

42 PART ONE THE SOFTWARE PROCESS

Evolutionary process
models produce an
increasingly more
complete version of
the software with each
iteration.

8 It is important to note that an incremental philosophy is also used for all “agile” process models dis-

cussed in Chapter 3.

increment # 1

increment # 2

delivery of
1st increment

delivery of
2nd increment

delivery of
nth increment

increment # n

Project Calendar Time

So
ft

w
a
re

 F
u
n
ct

io
n
a
lit

y
 a

n
d
 F

ea
tu

re
s

Communication

Planning

Modeling (analysis, design)

Construction (code, test)

Deployment (delivery, feedback)

FIGURE 2.5

The
incremental
model

pre75977_ch02.qxd 11/27/08 3:21 PM Page 42

meet competitive or business pressure; a set of core product or system requirements

is well understood, but the details of product or system extensions have yet to be

defined. In these and similar situations, you need a process model that has been

explicitly designed to accommodate a product that evolves over time.

Evolutionary models are iterative. They are characterized in a manner that

enables you to develop increasingly more complete versions of the software. In the

paragraphs that follow, I present two common evolutionary process models.

Prototyping. Often, a customer defines a set of general objectives for software,

but does not identify detailed requirements for functions and features. In other

cases, the developer may be unsure of the efficiency of an algorithm, the adapt-

ability of an operating system, or the form that human-machine interaction should

take. In these, and many other situations, a prototyping paradigm may offer the best

approach.

Although prototyping can be used as a stand-alone process model, it is more com-

monly used as a technique that can be implemented within the context of any one

of the process models noted in this chapter. Regardless of the manner in which it is

applied, the prototyping paradigm assists you and other stakeholders to better

understand what is to be built when requirements are fuzzy.

The prototyping paradigm (Figure 2.6) begins with communication. You meet with

other stakeholders to define the overall objectives for the software, identify whatever

requirements are known, and outline areas where further definition is mandatory. A

prototyping iteration is planned quickly, and modeling (in the form of a “quick de-

sign”) occurs. A quick design focuses on a representation of those aspects of the soft-

ware that will be visible to end users (e.g., human interface layout or output display

CHAPTER 2 PROCESS MODELS 43

uote:

“Plan to throw one
away. You will do
that, anyway. Your
only choice is
whether to try to
sell the throwaway
to customers.”

Frederick P.
Brooks

When your customer
has a legitimate need,
but is clueless about
the details, develop a
prototype as a first
step.

Communication

Quick plan

Construction
of
prototype

Modeling
 Quick design

Deployment
 Delivery
 & Feedback

FIGURE 2.6

The
prototyping
paradigm

pre75977_ch02.qxd 11/27/08 3:21 PM Page 43

formats). The quick design leads to the construction of a prototype. The prototype is

deployed and evaluated by stakeholders, who provide feedback that is used to fur-

ther refine requirements. Iteration occurs as the prototype is tuned to satisfy the

needs of various stakeholders, while at the same time enabling you to better under-

stand what needs to be done.

Ideally, the prototype serves as a mechanism for identifying software require-

ments. If a working prototype is to be built, you can make use of existing program

fragments or apply tools (e.g., report generators and window managers) that enable

working programs to be generated quickly.

But what do you do with the prototype when it has served the purpose described

earlier? Brooks [Bro95] provides one answer:

In most projects, the first system built is barely usable. It may be too slow, too big, awk-

ward in use or all three. There is no alternative but to start again, smarting but smarter,

and build a redesigned version in which these problems are solved.

The prototype can serve as “the first system.” The one that Brooks recommends

you throw away. But this may be an idealized view. Although some prototypes are

built as “throwaways,” others are evolutionary in the sense that the prototype slowly

evolves into the actual system.

Both stakeholders and software engineers like the prototyping paradigm. Users

get a feel for the actual system, and developers get to build something immediately.

Yet, prototyping can be problematic for the following reasons:

1. Stakeholders see what appears to be a working version of the software,

unaware that the prototype is held together haphazardly, unaware that in the

rush to get it working you haven’t considered overall software quality or

long-term maintainability. When informed that the product must be rebuilt so

that high levels of quality can be maintained, stakeholders cry foul and

demand that “a few fixes” be applied to make the prototype a working

product. Too often, software development management relents.

2. As a software engineer, you often make implementation compromises in

order to get a prototype working quickly. An inappropriate operating system

or programming language may be used simply because it is available and

known; an inefficient algorithm may be implemented simply to demonstrate

capability. After a time, you may become comfortable with these choices and

forget all the reasons why they were inappropriate. The less-than-ideal

choice has now become an integral part of the system.

Although problems can occur, prototyping can be an effective paradigm for soft-

ware engineering. The key is to define the rules of the game at the beginning; that is,

all stakeholders should agree that the prototype is built to serve as a mechanism for

defining requirements. It is then discarded (at least in part), and the actual software

is engineered with an eye toward quality.

44 PART ONE THE SOFTWARE PROCESS

Resist pressure to
extend a rough
prototype into a
production product.
Quality almost always
suffers as a result.

pre75977_ch02.qxd 11/27/08 3:21 PM Page 44

The Spiral Model. Originally proposed by Barry Boehm [Boe88], the spiral model

is an evolutionary software process model that couples the iterative nature of proto-

typing with the controlled and systematic aspects of the waterfall model. It provides

the potential for rapid development of increasingly more complete versions of the

software. Boehm [Boe01a] describes the model in the following manner:

The spiral development model is a risk-driven process model generator that is used to

guide multi-stakeholder concurrent engineering of software intensive systems. It has two

main distinguishing features. One is a cyclic approach for incrementally growing a sys-

tem’s degree of definition and implementation while decreasing its degree of risk. The

other is a set of anchor point milestones for ensuring stakeholder commitment to feasible

and mutually satisfactory system solutions.

Using the spiral model, software is developed in a series of evolutionary releases.

During early iterations, the release might be a model or prototype. During later iter-

ations, increasingly more complete versions of the engineered system are produced.

CHAPTER 2 PROCESS MODELS 45

The scene: Meeting room for the
software engineering group at CPI Corporation, a
(fictional) company that makes consumer products for
home and commercial use.

The players: Lee Warren, engineering manager; Doug
Miller, software engineering manager; Jamie Lazar,
software team member; Vinod Raman, software team
member; and Ed Robbins, software team member.

The conversation:

Lee: So let’s recapitulate. I’ve spent some time discussing
the SafeHome product line as we see it at the moment.
No doubt, we’ve got a lot of work to do to simply define
the thing, but I’d like you guys to begin thinking about
how you’re going to approach the software part of this
project.

Doug: Seems like we’ve been pretty disorganized in our
approach to software in the past.

Ed: I don’t know, Doug, we always got product out
the door.

Doug: True, but not without a lot of grief, and this
project looks like it’s bigger and more complex than
anything we’ve done in the past.

Jamie: Doesn’t look that hard, but I agree . . . our
ad hoc approach to past projects won’t work here,
particularly if we have a very tight time line.

Doug (smiling): I want to be a bit more professional in
our approach. I went to a short course last week and
learned a lot about software engineering . . . good stuff.
We need a process here.

Jamie (with a frown): My job is to build computer
programs, not push paper around.

Doug: Give it a chance before you go negative on
me. Here’s what I mean. [Doug proceeds to describe
the process framework described in this chapter and
the prescriptive process models presented to this
point.]

Doug: So anyway, it seems to me that a linear model is
not for us . . . assumes we have all requirements up front
and, knowing this place, that’s not likely.

Vinod: Yeah, and it sounds way too IT-oriented . . .
probably good for building an inventory control system
or something, but it’s just not right for SafeHome.

Doug: I agree.

Ed: That prototyping approach seems OK. A lot like what
we do here anyway.

Vinod: That’s a problem. I’m worried that it doesn’t
provide us with enough structure.

Doug: Not to worry. We’ve got plenty of other options,
and I want you guys to pick what’s best for the team and
best for the project.

SAFEHOME

Selecting a Process Model, Part 1

pre75977_ch02.qxd 11/27/08 3:21 PM Page 45

A spiral model is divided into a set of framework activities defined by the software

engineering team. For illustrative purposes, I use the generic framework activities

discussed earlier.9 Each of the framework activities represent one segment of the spi-

ral path illustrated in Figure 2.7. As this evolutionary process begins, the software

team performs activities that are implied by a circuit around the spiral in a clockwise

direction, beginning at the center. Risk (Chapter 28) is considered as each revolution

is made. Anchor point milestones—a combination of work products and conditions

that are attained along the path of the spiral—are noted for each evolutionary pass.

The first circuit around the spiral might result in the development of a product

specification; subsequent passes around the spiral might be used to develop a pro-

totype and then progressively more sophisticated versions of the software. Each pass

through the planning region results in adjustments to the project plan. Cost and

schedule are adjusted based on feedback derived from the customer after delivery.

In addition, the project manager adjusts the planned number of iterations required

to complete the software.

Unlike other process models that end when software is delivered, the spiral model

can be adapted to apply throughout the life of the computer software. Therefore, the

first circuit around the spiral might represent a “concept development project” that

starts at the core of the spiral and continues for multiple iterations10 until concept

46 PART ONE THE SOFTWARE PROCESS

9 The spiral model discussed in this section is a variation on the model proposed by Boehm. For

further information on the original spiral model, see [Boe88]. More recent discussion of Boehm’s

spiral model can be found in [Boe98].

10 The arrows pointing inward along the axis separating the deployment region from the commu-

nication region indicate a potential for local iteration along the same spiral path.

Communication

Planning

Modeling

Construction
Deployment

delivery
feedback

Start

analysis
design

code
test

estimation
scheduling
risk analysis

FIGURE 2.7

A typical
spiral model

The spiral model can
be adapted to apply
throughout the entire
life cycle of an
application, from
concept development
to maintenance.

WebRef
Useful information
about the spiral model
can be obtained at:
www.sei.cmu
.edu/publications/
documents/00
.reports/00sr008
.html.

pre75977_ch02.qxd 11/27/08 3:21 PM Page 46

development is complete. If the concept is to be developed into an actual product,

the process proceeds outward on the spiral and a “new product development proj-

ect” commences. The new product will evolve through a number of iterations around

the spiral. Later, a circuit around the spiral might be used to represent a “product en-

hancement project.” In essence, the spiral, when characterized in this way, remains

operative until the software is retired. There are times when the process is dormant,

but whenever a change is initiated, the process starts at the appropriate entry point

(e.g., product enhancement).

The spiral model is a realistic approach to the development of large-scale systems

and software. Because software evolves as the process progresses, the developer

and customer better understand and react to risks at each evolutionary level. The

spiral model uses prototyping as a risk reduction mechanism but, more important,

enables you to apply the prototyping approach at any stage in the evolution of the

product. It maintains the systematic stepwise approach suggested by the classic life

cycle but incorporates it into an iterative framework that more realistically reflects

the real world. The spiral model demands a direct consideration of technical risks at

all stages of the project and, if properly applied, should reduce risks before they

become problematic.

But like other paradigms, the spiral model is not a panacea. It may be difficult to

convince customers (particularly in contract situations) that the evolutionary

approach is controllable. It demands considerable risk assessment expertise and

relies on this expertise for success. If a major risk is not uncovered and managed,

problems will undoubtedly occur.

CHAPTER 2 PROCESS MODELS 47

If your management
demands fixed-budget
development
(generally a bad idea),
the spiral can be a
problem. As each
circuit is completed,
project cost is revisited
and revised.

uote:

“I’m only this far
and only tomorrow
leads my way.”

Dave Matthews
Band

The scene: Meeting room for the
software engineering group at CPI Corporation, a
company that makes consumer products for home and
commercial use.

The players: Lee Warren, engineering manager; Doug
Miller, software engineering manager; Vinod and Jamie,
members of the software engineering team.

The conversation: [Doug describes evolutionary
process options.]

Jamie: Now I see something I like. An incremental
approach makes sense, and I really like the flow of that
spiral model thing. That’s keepin’ it real.

Vinod: I agree. We deliver an increment, learn from
customer feedback, replan, and then deliver another
increment. It also fits into the nature of the product. We

can have something on the market fast and then add
functionality with each version, er, increment.

Lee: Wait a minute. Did you say that we regenerate the
plan with each tour around the spiral, Doug? That’s not so
great; we need one plan, one schedule, and we’ve got to
stick to it.

Doug: That’s old-school thinking, Lee. Like the guys said,
we’ve got to keep it real. I submit that it’s better to tweak
the plan as we learn more and as changes are requested.
It’s way more realistic. What’s the point of a plan if it
doesn’t reflect reality?

Lee (frowning): I suppose so, but . . . senior management’s
not going to like this . . . they want a fixed plan.

Doug (smiling): Then you’ll have to reeducate them,
buddy.

SAFEHOME

Selecting a Process Model, Part 2

pre75977_ch02.qxd 11/27/08 3:21 PM Page 47

2.3.4 Concurrent Models

The concurrent development model, sometimes called concurrent engineering, allows

a software team to represent iterative and concurrent elements of any of the process

models described in this chapter. For example, the modeling activity defined for the

spiral model is accomplished by invoking one or more of the following software

engineering actions: prototyping, analysis, and design.11

Figure 2.8 provides a schematic representation of one software engineering

activity within the modeling activity using a concurrent modeling approach. The

activity—modeling—may be in any one of the states12 noted at any given time. Sim-

ilarly, other activities, actions, or tasks (e.g., communication or construction) can

be represented in an analogous manner. All software engineering activities exist

concurrently but reside in different states.

48 PART ONE THE SOFTWARE PROCESS

11 It should be noted that analysis and design are complex tasks that require substantial discussion.

Part 2 of this book considers these topics in detail.

12 A state is some externally observable mode of behavior.

Under review

Baselined

Under
revision

Awaiting
changes

Under
development

Inactive

Modeling activity

Represents the state
of a software engineering
activity or task

Done

FIGURE 2.8

One element of
the concurrent
process model

The concurrent model
is often more appro-
priate for product engi-
neering projects where
different engineering
teams are involved.

pre75977_ch02.qxd 11/27/08 3:21 PM Page 48

For example, early in a project the communication activity (not shown in the figure)

has completed its first iteration and exists in the awaiting changes state. The model-

ing activity (which existed in the inactive state while initial communication was com-

pleted, now makes a transition into the under development state. If, however, the

customer indicates that changes in requirements must be made, the modeling activity

moves from the under development state into the awaiting changes state.

Concurrent modeling defines a series of events that will trigger transitions from

state to state for each of the software engineering activities, actions, or tasks. For

example, during early stages of design (a major software engineering action that

occurs during the modeling activity), an inconsistency in the requirements model is

uncovered. This generates the event analysis model correction, which will trigger the

requirements analysis action from the done state into the awaiting changes state.

Concurrent modeling is applicable to all types of software development and pro-

vides an accurate picture of the current state of a project. Rather than confining soft-

ware engineering activities, actions, and tasks to a sequence of events, it defines a

process network. Each activity, action, or task on the network exists simultaneously

with other activities, actions, or tasks. Events generated at one point in the process

network trigger transitions among the states.

2.3.5 A Final Word on Evolutionary Processes

I have already noted that modern computer software is characterized by continual

change, by very tight time lines, and by an emphatic need for customer–user

satisfaction. In many cases, time-to-market is the most important management

requirement. If a market window is missed, the software project itself may be

meaningless.13

Evolutionary process models were conceived to address these issues, and yet, as

a general class of process models, they too have weaknesses. These are summarized

by Nogueira and his colleagues [Nog00] :

Despite the unquestionable benefits of evolutionary software processes, we have some

concerns. The first concern is that prototyping [and other more sophisticated evolution-

ary processes] poses a problem to project planning because of the uncertain number of

cycles required to construct the product. Most project management and estimation tech-

niques are based on linear layouts of activities, so they do not fit completely.

Second, evolutionary software processes do not establish the maximum speed of the

evolution. If the evolutions occur too fast, without a period of relaxation, it is certain that

the process will fall into chaos. On the other hand if the speed is too slow then produc-

tivity could be affected . . .

CHAPTER 2 PROCESS MODELS 49

13 It is important to note, however, that being the first to reach a market is no guarantee of success.

In fact, many very successful software products have been second or even third to reach the market

(learning from the mistakes of their predecessors).

uote:

“Every process in
your organization
has a customer,
and without a
customer a process
has no purpose.”

V. Daniel Hunt

pre75977_ch02.qxd 11/27/08 3:21 PM Page 49

Third, software processes should be focused on flexibility and extensibility rather than

on high quality. This assertion sounds scary. However, we should prioritize the speed of

the development over zero defects. Extending the development in order to reach high

quality could result in a late delivery of the product, when the opportunity niche has

disappeared. This paradigm shift is imposed by the competition on the edge of chaos.

Indeed, a software process that focuses on flexibility, extensibility, and speed of de-

velopment over high quality does sound scary. And yet, this idea has been proposed

by a number of well-respected software engineering experts (e.g., [You95], [Bac97]).

The intent of evolutionary models is to develop high-quality software14 in an iter-

ative or incremental manner. However, it is possible to use an evolutionary process

to emphasize flexibility, extensibility, and speed of development. The challenge for

software teams and their managers is to establish a proper balance between these

critical project and product parameters and customer satisfaction (the ultimate

arbiter of software quality).

2.4 SPECIALIZED PROCESS MODELS

Specialized process models take on many of the characteristics of one or more of the

traditional models presented in the preceding sections. However, these models tend

to be applied when a specialized or narrowly defined software engineering approach

is chosen.15

2.4.1 Component-Based Development

Commercial off-the-shelf (COTS) software components, developed by vendors who

offer them as products, provide targeted functionality with well-defined interfaces

that enable the component to be integrated into the software that is to be built. The

component-based development model incorporates many of the characteristics of the

spiral model. It is evolutionary in nature [Nie92], demanding an iterative approach to

the creation of software. However, the component-based development model con-

structs applications from prepackaged software components.

Modeling and construction activities begin with the identification of candidate

components. These components can be designed as either conventional software

modules or object-oriented classes or packages16 of classes. Regardless of the

50 PART ONE THE SOFTWARE PROCESS

14 In this context software quality is defined quite broadly to encompass not only customer satisfac-

tion, but also a variety of technical criteria discussed in Chapters 14 and 16.

15 In some cases, these specialized process models might better be characterized as a collection of

techniques or a “methodology” for accomplishing a specific software development goal. However,

they do imply a process.

16 Object-oriented concepts are discussed in Appendix 2 and are used throughout Part 2 of this book.

In this context, a class encompasses a set of data and the procedures that process the data. A pack-

age of classes is a collection of related classes that work together to achieve some end result.

WebRef
Useful information on
component-based
development can be
obtained at: www
.cbd-hq.com.

pre75977_ch02.qxd 11/27/08 3:21 PM Page 50

technology that is used to create the components, the component-based develop-

ment model incorporates the following steps (implemented using an evolutionary

approach):

1. Available component-based products are researched and evaluated for the

application domain in question.

2. Component integration issues are considered.

3. A software architecture is designed to accommodate the components.

4. Components are integrated into the architecture.

5. Comprehensive testing is conducted to ensure proper functionality.

The component-based development model leads to software reuse, and reusabil-

ity provides software engineers with a number of measurable benefits. Your software

engineering team can achieve a reduction in development cycle time as well as a

reduction in project cost if component reuse becomes part of your culture. Component-

based development is discussed in more detail in Chapter 10.

2.4.2 The Formal Methods Model

The formal methods model encompasses a set of activities that leads to formal math-

ematical specification of computer software. Formal methods enable you to specify,

develop, and verify a computer-based system by applying a rigorous, mathematical

notation. A variation on this approach, called cleanroom software engineering [Mil87,

Dye92], is currently applied by some software development organizations.

When formal methods (Chapter 21) are used during development, they provide a

mechanism for eliminating many of the problems that are difficult to overcome using

other software engineering paradigms. Ambiguity, incompleteness, and inconsis-

tency can be discovered and corrected more easily—not through ad hoc review, but

through the application of mathematical analysis. When formal methods are used

during design, they serve as a basis for program verification and therefore enable

you to discover and correct errors that might otherwise go undetected.

Although not a mainstream approach, the formal methods model offers the prom-

ise of defect-free software. Yet, concern about its applicability in a business envi-

ronment has been voiced:

• The development of formal models is currently quite time consuming and

expensive.

• Because few software developers have the necessary background to apply

formal methods, extensive training is required.

• It is difficult to use the models as a communication mechanism for techni-

cally unsophisticated customers.

These concerns notwithstanding, the formal methods approach has gained

adherents among software developers who must build safety-critical software

CHAPTER 2 PROCESS MODELS 51

If formal
methods can

demonstrate
software
correctness, why
is it they are not
widely used?

?

pre75977_ch02.qxd 11/27/08 3:21 PM Page 51

(e.g., developers of aircraft avionics and medical devices) and among developers

that would suffer severe economic hardship should software errors occur.

2.4.3 Aspect-Oriented Software Development

Regardless of the software process that is chosen, the builders of complex software

invariably implement a set of localized features, functions, and information content.

These localized software characteristics are modeled as components (e.g., object-

oriented classes) and then constructed within the context of a system architecture.

As modern computer-based systems become more sophisticated (and complex),

certain concerns—customer required properties or areas of technical interest—span

the entire architecture. Some concerns are high-level properties of a system (e.g.,

security, fault tolerance). Other concerns affect functions (e.g., the application of

business rules), while others are systemic (e.g., task synchronization or memory

management).

When concerns cut across multiple system functions, features, and information,

they are often referred to as crosscutting concerns. Aspectual requirements define

those crosscutting concerns that have an impact across the software architecture.

Aspect-oriented software development (AOSD), often referred to as aspect-oriented

programming (AOP), is a relatively new software engineering paradigm that provides

a process and methodological approach for defining, specifying, designing, and con-

structing aspects—“mechanisms beyond subroutines and inheritance for localizing

the expression of a crosscutting concern” [Elr01].

Grundy [Gru02] provides further discussion of aspects in the context of what he

calls aspect-oriented component engineering (AOCE):

AOCE uses a concept of horizontal slices through vertically-decomposed software com-

ponents, called “aspects,” to characterize cross-cutting functional and non-functional

properties of components. Common, systemic aspects include user interfaces, collabora-

tive work, distribution, persistency, memory management, transaction processing, secu-

rity, integrity and so on. Components may provide or require one or more “aspect details”

relating to a particular aspect, such as a viewing mechanism, extensible affordance and

interface kind (user interface aspects); event generation, transport and receiving

(distribution aspects); data store/retrieve and indexing (persistency aspects); authentica-

tion, encoding and access rights (security aspects); transaction atomicity, concurrency

control and logging strategy (transaction aspects); and so on. Each aspect detail has a

number of properties, relating to functional and/or non-functional characteristics of the

aspect detail.

A distinct aspect-oriented process has not yet matured. However, it is likely that

such a process will adopt characteristics of both evolutionary and concurrent

process models. The evolutionary model is appropriate as aspects are identified and

then constructed. The parallel nature of concurrent development is essential be-

cause aspects are engineered independently of localized software components and

yet, aspects have a direct impact on these components. Hence, it is essential to

52 PART ONE THE SOFTWARE PROCESS

WebRef
A wide array of
resources and
information on AOP
can be found at:
aosd.net.

AOSD defines
“aspects” that express
customer concerns that
cut across multiple
system functions,
features, and
information.

pre75977_ch02.qxd 11/27/08 3:21 PM Page 52

instantiate asynchronous communication between the software process activities

applied to the engineering and construction of aspects and components.

A detailed discussion of aspect-oriented software development is best left to

books dedicated to the subject. If you have further interest, see [Saf08], [Cla05],

[Jac04], and [Gra03].

CHAPTER 2 PROCESS MODELS 53

17 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.

In most cases, tool names are trademarked by their respective developers.

Process Management
Objective: To assist in the definition,
execution, and management of prescriptive

process models.

Mechanics: Process management tools allow a software
organization or team to define a complete software
process model (framework activities, actions, tasks, QA
checkpoints, milestones, and work products). In addition,
the tools provide a road map as software engineers do
technical work and a template for managers who must
track and control the software process.

Representative Tools:17

GDPA, a research process definition tool suite, developed at
Bremen University in Germany (www.informatik

.uni-bremen.de/uniform/gdpa/home.htm),
provides a wide array of process modeling and
management functions.

SpeeDev, developed by SpeeDev Corporation
(www.speedev.com) encompasses a suite of tools
for process definition, requirements management, issue
resolution, project planning, and tracking.

ProVision BPMx, developed by Proforma
(www.proformacorp.com), is representative of
many tools that assist in process definition and
workflow automation.

A worthwhile listing of many different tools associated
with the software process can be found at www
.processwave.net/Links/tool_links.htm.

SOFTWARE TOOLS

2.5 THE UNIFIED PROCESS

In their seminal book on the Unified Process, Ivar Jacobson, Grady Booch, and James

Rumbaugh [Jac99] discuss the need for a “use case driven, architecture-centric, iter-

ative and incremental” software process when they state:

Today, the trend in software is toward bigger, more complex systems. That is due in part

to the fact that computers become more powerful every year, leading users to expect

more from them. This trend has also been influenced by the expanding use of the Inter-

net for exchanging all kinds of information. . . . Our appetite for ever-more sophisticated

software grows as we learn from one product release to the next how the product could

be improved. We want software that is better adapted to our needs, but that, in turn,

merely makes the software more complex. In short, we want more.

In some ways the Unified Process is an attempt to draw on the best features and

characteristics of traditional software process models, but characterize them in a

way that implements many of the best principles of agile software development

pre75977_ch02.qxd 11/27/08 3:21 PM Page 53

(Chapter 3). The Unified Process recognizes the importance of customer communi-

cation and streamlined methods for describing the customer’s view of a system

(the use case18). It emphasizes the important role of software architecture and

“helps the architect focus on the right goals, such as understandability, reliance to

future changes, and reuse” [Jac99]. It suggests a process flow that is iterative and

incremental, providing the evolutionary feel that is essential in modern software

development.

2.5.1 A Brief History

During the early 1990s James Rumbaugh [Rum91], Grady Booch [Boo94], and Ivar

Jacobson [Jac92] began working on a “unified method” that would combine the best

features of each of their individual object-oriented analysis and design methods and

adopt additional features proposed by other experts (e.g., [Wir90]) in object-oriented

modeling. The result was UML—a unified modeling language that contains a robust

notation for the modeling and development of object-oriented systems. By 1997,

UML became a de facto industry standard for object-oriented software development.

UML is used throughout Part 2 of this book to represent both requirements and

design models. Appendix 1 presents an introductory tutorial for those who are unfa-

miliar with basic UML notation and modeling rules. A comprehensive presentation

of UML is best left to textbooks dedicated to the subject. Recommended books are

listed in Appendix 1.

UML provided the necessary technology to support object-oriented software engi-

neering practice, but it did not provide the process framework to guide project teams

in their application of the technology. Over the next few years, Jacobson, Rumbaugh,

and Booch developed the Unified Process, a framework for object-oriented software

engineering using UML. Today, the Unified Process (UP) and UML are widely used on

object-oriented projects of all kinds. The iterative, incremental model proposed by the

UP can and should be adapted to meet specific project needs.

2.5.2 Phases of the Unified Process19

Earlier in this chapter, I discussed five generic framework activities and argued that

they may be used to describe any software process model. The Unified Process is no

exception. Figure 2.9 depicts the “phases” of the UP and relates them to the generic

activities that have been discussed in Chapter 1 and earlier in this chapter.

54 PART ONE THE SOFTWARE PROCESS

18 A use case (Chapter 5) is a text narrative or template that describes a system function or feature

from the user’s point of view. A use case is written by the user and serves as a basis for the creation

of a more comprehensive requirements model.

19 The Unified Process is sometimes called the Rational Unified Process (RUP) after the Rational Cor-

poration (subsequently acquired by IBM), an early contributor to the development and refinement

of the UP and a builder of complete environments (tools and technology) that support the process.

pre75977_ch02.qxd 11/27/08 3:21 PM Page 54

The inception phase of the UP encompasses both customer communication and

planning activities. By collaborating with stakeholders, business requirements for

the software are identified; a rough architecture for the system is proposed; and a

plan for the iterative, incremental nature of the ensuing project is developed.

Fundamental business requirements are described through a set of preliminary use

cases (Chapter 5) that describe which features and functions each major class of

users desires. Architecture at this point is nothing more than a tentative outline of

major subsystems and the function and features that populate them. Later, the ar-

chitecture will be refined and expanded into a set of models that will represent

different views of the system. Planning identifies resources, assesses major risks,

defines a schedule, and establishes a basis for the phases that are to be applied as

the software increment is developed.

The elaboration phase encompasses the communication and modeling activities of

the generic process model (Figure 2.9). Elaboration refines and expands the prelimi-

nary use cases that were developed as part of the inception phase and expands the

architectural representation to include five different views of the software—the use

case model, the requirements model, the design model, the implementation model,

and the deployment model. In some cases, elaboration creates an “executable

architectural baseline” [Arl02] that represents a “first cut” executable system.20 The

architectural baseline demonstrates the viability of the architecture but does not

provide all features and functions required to use the system. In addition, the plan is

carefully reviewed at the culmination of the elaboration phase to ensure that scope,

risks, and delivery dates remain reasonable. Modifications to the plan are often made

at this time.

CHAPTER 2 PROCESS MODELS 55

Transition

Production

software increment

Release

modeling

construction

planning

communication

deployment Construction

Inception

Elaboration
FIGURE 2.9

The Unified
Process

UP phases are similar
in intent to the generic
framework activities
defined in this book.

20 It is important to note that the architectural baseline is not a prototype in that it is not thrown away.

Rather, the baseline is fleshed out during the next UP phase.

pre75977_ch02.qxd 11/27/08 3:21 PM Page 55

The construction phase of the UP is identical to the construction activity defined

for the generic software process. Using the architectural model as input, the con-

struction phase develops or acquires the software components that will make each

use case operational for end users. To accomplish this, requirements and design

models that were started during the elaboration phase are completed to reflect the

final version of the software increment. All necessary and required features and

functions for the software increment (i.e., the release) are then implemented in

source code. As components are being implemented, unit tests21 are designed and

executed for each. In addition, integration activities (component assembly and inte-

gration testing) are conducted. Use cases are used to derive a suite of acceptance

tests that are executed prior to the initiation of the next UP phase.

The transition phase of the UP encompasses the latter stages of the generic con-

struction activity and the first part of the generic deployment (delivery and feedback)

activity. Software is given to end users for beta testing and user feedback reports

both defects and necessary changes. In addition, the software team creates the nec-

essary support information (e.g., user manuals, troubleshooting guides, installation

procedures) that is required for the release. At the conclusion of the transition phase,

the software increment becomes a usable software release.

The production phase of the UP coincides with the deployment activity of the

generic process. During this phase, the ongoing use of the software is monitored,

support for the operating environment (infrastructure) is provided, and defect reports

and requests for changes are submitted and evaluated.

It is likely that at the same time the construction, transition, and production

phases are being conducted, work may have already begun on the next software

increment. This means that the five UP phases do not occur in a sequence, but rather

with staggered concurrency.

A software engineering workflow is distributed across all UP phases. In the con-

text of UP, a workflow is analogous to a task set (described earlier in this chapter).

That is, a workflow identifies the tasks required to accomplish an important software

engineering action and the work products that are produced as a consequence of

successfully completing the tasks. It should be noted that not every task identified for

a UP workflow is conducted for every software project. The team adapts the process

(actions, tasks, subtasks, and work products) to meet its needs.

2.6 PERSONAL AND TEAM PROCESS MODELS

The best software process is one that is close to the people who will be doing the

work. If a software process model has been developed at a corporate or organiza-

tional level, it can be effective only if it is amenable to significant adaptation to meet

56 PART ONE THE SOFTWARE PROCESS

21 A comprehensive discussion of software testing (including unit tests) is presented in Chapters 17
through 20.

WebRef
An interesting
discussion of the UP in
the context of agile
development can be
found at
www.ambysoft
.com/
unifiedprocess/
agileUP.html.

pre75977_ch02.qxd 11/27/08 3:21 PM Page 56

the needs of the project team that is actually doing software engineering work. In an

ideal setting, you would create a process that best fits your needs, and at the same

time, meets the broader needs of the team and the organization. Alternatively, the

team itself can create its own process, and at the same time meet the narrower needs

of individuals and the broader needs of the organization. Watts Humphrey ([Hum97]

and [Hum00]) argues that it is possible to create a “personal software process”

and/or a “team software process.” Both require hard work, training, and coordina-

tion, but both are achievable.22

2.6.1 Personal Software Process (PSP)

Every developer uses some process to build computer software. The process may be

haphazard or ad hoc; may change on a daily basis; may not be efficient, effective, or

even successful; but a “process” does exist. Watts Humphrey [Hum97] suggests that

in order to change an ineffective personal process, an individual must move through

four phases, each requiring training and careful instrumentation. The Personal Soft-

ware Process (PSP) emphasizes personal measurement of both the work product that

is produced and the resultant quality of the work product. In addition PSP makes the

practitioner responsible for project planning (e.g., estimating and scheduling) and

empowers the practitioner to control the quality of all software work products that

are developed. The PSP model defines five framework activities:

Planning. This activity isolates requirements and develops both size and

resource estimates. In addition, a defect estimate (the number of defects

projected for the work) is made. All metrics are recorded on worksheets or

templates. Finally, development tasks are identified and a project schedule is

created.

High-level design. External specifications for each component to be con-

structed are developed and a component design is created. Prototypes are

built when uncertainty exists. All issues are recorded and tracked.

High-level design review. Formal verification methods (Chapter 21) are

applied to uncover errors in the design. Metrics are maintained for all impor-

tant tasks and work results.

Development. The component-level design is refined and reviewed. Code

is generated, reviewed, compiled, and tested. Metrics are maintained for all

important tasks and work results.

Postmortem. Using the measures and metrics collected (this is a substan-

tial amount of data that should be analyzed statistically), the effectiveness of

the process is determined. Measures and metrics should provide guidance for

modifying the process to improve its effectiveness.

CHAPTER 2 PROCESS MODELS 57

22 It’s worth noting the proponents of agile software development (Chapter 3) also argue that the

process should remain close to the team. They propose an alternative method for achieving this.

uote:

“A person who is
successful has
simply formed the
habit of doing
things that
unsuccessful people
will not do.”

Dexter Yager

WebRef
A wide array of
resources for PSP can
be found at www
.ipd.uka.de/PSP/.

What
framework

activities are used
during PSP?

?

pre75977_ch02.qxd 11/27/08 3:21 PM Page 57

PSP stresses the need to identify errors early and, just as important, to understand

the types of errors that you are likely to make. This is accomplished through a rigor-

ous assessment activity performed on all work products you produce.

PSP represents a disciplined, metrics-based approach to software engineering

that may lead to culture shock for many practitioners. However, when PSP is prop-

erly introduced to software engineers [Hum96], the resulting improvement in soft-

ware engineering productivity and software quality are significant [Fer97]. However,

PSP has not been widely adopted throughout the industry. The reasons, sadly, have

more to do with human nature and organizational inertia than they do with the

strengths and weaknesses of the PSP approach. PSP is intellectually challenging and

demands a level of commitment (by practitioners and their managers) that is not al-

ways possible to obtain. Training is relatively lengthy, and training costs are high.

The required level of measurement is culturally difficult for many software people.

Can PSP be used as an effective software process at a personal level? The answer

is an unequivocal “yes.” But even if PSP is not adopted in its entirely, many of the

personal process improvement concepts that it introduces are well worth learning.

2.6.2 Team Software Process (TSP)

Because many industry-grade software projects are addressed by a team of practi-

tioners, Watts Humphrey extended the lessons learned from the introduction of PSP

and proposed a Team Software Process (TSP). The goal of TSP is to build a “self-

directed” project team that organizes itself to produce high-quality software.

Humphrey [Hum98] defines the following objectives for TSP:

• Build self-directed teams that plan and track their work, establish goals, and

own their processes and plans. These can be pure software teams or inte-

grated product teams (IPTs) of 3 to about 20 engineers.

• Show managers how to coach and motivate their teams and how to help

them sustain peak performance.

• Accelerate software process improvement by making CMM23 Level 5

behavior normal and expected.

• Provide improvement guidance to high-maturity organizations.

• Facilitate university teaching of industrial-grade team skills.

A self-directed team has a consistent understanding of its overall goals and objec-

tives; defines roles and responsibilities for each team member; tracks quantitative

project data (about productivity and quality); identifies a team process that is appro-

priate for the project and a strategy for implementing the process; defines local stan-

dards that are applicable to the team’s software engineering work; continually

assesses risk and reacts to it; and tracks, manages, and reports project status.

58 PART ONE THE SOFTWARE PROCESS

PSP emphasizes the
need to record and
analyze the types of
errors you make, so
that you can develop
strategies to eliminate
them.

To form a self-directed
team, you must collab-
orate well internally
and communicate well
externally.

WebRef
Information on building
high-performance teams
using TSP and PSP can
be obtained at:
www.sei.cmu
.edu/tsp/.

23 The Capability Maturity Model (CMM), a measure of the effectiveness of a software process, is

discussed in Chapter 30.

pre75977_ch02.qxd 11/27/08 3:21 PM Page 58

TSP defines the following framework activities: project launch, high-level

design, implementation, integration and test, and postmortem. Like their

counterparts in PSP (note that terminology is somewhat different), these activities

enable the team to plan, design, and construct software in a disciplined manner

while at the same time quantitatively measuring the process and the product. The

postmortem sets the stage for process improvements.

TSP makes use of a wide variety of scripts, forms, and standards that serve to guide

team members in their work. “Scripts” define specific process activities (i.e., project

launch, design, implementation, integration and system testing, postmortem) and other

more detailed work functions (e.g., development planning, requirements development,

software configuration management, unit test) that are part of the team process.

TSP recognizes that the best software teams are self-directed.24 Team members

set project objectives, adapt the process to meet their needs, control the project

schedule, and through measurement and analysis of the metrics collected, work con-

tinually to improve the team’s approach to software engineering.

Like PSP, TSP is a rigorous approach to software engineering that provides dis-

tinct and quantifiable benefits in productivity and quality. The team must make a full

commitment to the process and must undergo thorough training to ensure that the

approach is properly applied.

2.7 PROCESS TECHNOLOGY

One or more of the process models discussed in the preceding sections must be

adapted for use by a software team. To accomplish this, process technology tools have

been developed to help software organizations analyze their current process,

organize work tasks, control and monitor progress, and manage technical quality.

Process technology tools allow a software organization to build an automated

model of the process framework, task sets, and umbrella activities discussed in

Section 2.1. The model, normally represented as a network, can then be analyzed to

determine typical workflow and examine alternative process structures that might

lead to reduced development time or cost.

Once an acceptable process has been created, other process technology tools can

be used to allocate, monitor, and even control all software engineering activities,

actions, and tasks defined as part of the process model. Each member of a software

team can use such tools to develop a checklist of work tasks to be performed, work

products to be produced, and quality assurance activities to be conducted. The

process technology tool can also be used to coordinate the use of other software en-

gineering tools that are appropriate for a particular work task.

CHAPTER 2 PROCESS MODELS 59

24 In Chapter 3 I discuss the importance of “self-organizing” teams as a key element in agile software

development.

TSP scripts define
elements of the team
process and activities
that occur within the
process.

pre75977_ch02.qxd 11/27/08 3:21 PM Page 59

60 PART ONE THE SOFTWARE PROCESS

25 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.

In most cases, tool names are trademarked by their respective developers.

Process Modeling Tools
Objective: If an organization works to
improve a business (or software) process, it

must first understand it. Process modeling tools (also called
process technology or process management tools) are
used to represent the key elements of a process so that it
can be better understood. Such tools can also provide links
to process descriptions that help those involved in the
process to understand the actions and work tasks that are
required to perform it. Process modeling tools provide links
to other tools that provide support to defined process
activities.

Mechanics: Tools in this category allow a team to define
the elements of a unique process model (actions, tasks,
work products, QA points), provide detailed guidance on

the content or description of each process element, and
then manage the process as it is conducted. In some cases,
the process technology tools incorporate standard project
management tasks such as estimating, scheduling,
tracking, and control.

Representative Tools:25

Igrafx Process Tools—tools that enable a team to map,
measure, and model the software process
(www.micrografx.com)

Adeptia BPM Server—designed to manage, automate, and
optimize business processes (www.adeptia.com)

SpeedDev Suite—a collection of six tools with a heavy
emphasis on the management of communication and
modeling activities (www.speedev.com)

SOFTWARE TOOLS

2.8 PRODUCT AND PROCESS

If the process is weak, the end product will undoubtedly suffer. But an obsessive over-

reliance on process is also dangerous. In a brief essay written many years ago, Mar-

garet Davis [Dav95a] makes timeless comments on the duality of product and process:

About every ten years give or take five, the software community redefines “the problem”

by shifting its focus from product issues to process issues. Thus, we have embraced

structured programming languages (product) followed by structured analysis methods

(process) followed by data encapsulation (product) followed by the current emphasis

on the Software Engineering Institute’s Software Development Capability Maturity

Model (process) [followed by object-oriented methods, followed by agile software

development].

While the natural tendency of a pendulum is to come to rest at a point midway be-

tween two extremes, the software community’s focus constantly shifts because new force

is applied when the last swing fails. These swings are harmful in and of themselves be-

cause they confuse the average software practitioner by radically changing what it means

to perform the job let alone perform it well. The swings also do not solve “the problem”

for they are doomed to fail as long as product and process are treated as forming a

dichotomy instead of a duality.

There is precedence in the scientific community to advance notions of duality when

contradictions in observations cannot be fully explained by one competing theory or

another. The dual nature of light, which seems to be simultaneously particle and wave,

has been accepted since the 1920s when Louis de Broglie proposed it. I believe that the

pre75977_ch02.qxd 11/27/08 3:21 PM Page 60

observations we can make on the artifacts of software and its development demonstrate

a fundamental duality between product and process. You can never derive or understand

the full artifact, its context, use, meaning, and worth if you view it as only a process or

only a product . . .

All of human activity may be a process, but each of us derives a sense of self-worth

from those activities that result in a representation or instance that can be used or

appreciated either by more than one person, used over and over, or used in some other

context not considered. That is, we derive feelings of satisfaction from reuse of our prod-

ucts by ourselves or others.

Thus, while the rapid assimilation of reuse goals into software development poten-

tially increases the satisfaction software practitioners derive from their work, it also in-

creases the urgency for acceptance of the duality of product and process. Thinking of a

reusable artifact as only product or only process either obscures the context and ways to

use it or obscures the fact that each use results in product that will, in turn, be used as

input to some other software development activity. Taking one view over the other

dramatically reduces the opportunities for reuse and, hence, loses the opportunity for

increasing job satisfaction.

People derive as much (or more) satisfaction from the creative process as they do

from the end product. An artist enjoys the brush strokes as much as the framed re-

sult. A writer enjoys the search for the proper metaphor as much as the finished

book. As creative software professional, you should also derive as much satisfaction

from the process as the end product. The duality of product and process is one

important element in keeping creative people engaged as software engineering

continues to evolve.

2.9 SUMMARY

A generic process model for software engineering encompasses a set of framework

and umbrella activities, actions, and work tasks. Each of a variety of process models

can be described by a different process flow—a description of how the framework

activities, actions, and tasks are organized sequentially and chronologically. Process

patterns can be used to solve common problems that are encountered as part of the

software process.

Prescriptive process models have been applied for many years in an effort to bring

order and structure to software development. Each of these models suggests a some-

what different process flow, but all perform the same set of generic framework

activities: communication, planning, modeling, construction, and deployment.

Sequential process models, such as the waterfall and V models, are the oldest

software engineering paradigms. They suggest a linear process flow that is often in-

consistent with modern realities (e.g., continuous change, evolving systems, tight

time lines) in the software world. They do, however, have applicability in situations

where requirements are well defined and stable.

CHAPTER 2 PROCESS MODELS 61

pre75977_ch02.qxd 11/27/08 3:21 PM Page 61

Incremental process models are iterative in nature and produce working versions

of software quite rapidly. Evolutionary process models recognize the iterative, in-

cremental nature of most software engineering projects and are designed to accom-

modate change. Evolutionary models, such as prototyping and the spiral model,

produce incremental work products (or working versions of the software) quickly.

These models can be adopted to apply across all software engineering activities—

from concept development to long-term system maintenance.

The concurrent process model allows a software team to represent iterative

and concurrent elements of any process model. Specialized models include the

component-based model that emphasizes component reuse and assembly; the for-

mal methods model that encourages a mathematically based approach to software

development and verification; and the aspect-oriented model that accommodates

crosscutting concerns spanning the entire system architecture. The Unified Process

is a “use case driven, architecture-centric, iterative and incremental” software

process designed as a framework for UML methods and tools.

Personal and team models for the software process have been proposed. Both

emphasize measurement, planning, and self-direction as key ingredients for a suc-

cessful software process.

PROBLEMS AND POINTS TO PONDER

2.1. In the introduction to this chapter Baetjer notes: “The process provides interaction
between users and designers, between users and evolving tools, and between designers and
evolving tools [technology].” List five questions that (a) designers should ask users, (b) users
should ask designers, (c) users should ask themselves about the software product that is to be
built, (d) designers should ask themselves about the software product that is to be built and the
process that will be used to build it.

2.2. Try to develop a set of actions for the communication activity. Select one action and define
a task set for it.

2.3. A common problem during communication occurs when you encounter two stakehold-
ers who have conflicting ideas about what the software should be. That is, you have mutually
conflicting requirements. Develop a process pattern (this would be a stage pattern) using the
template presented in Section 2.1.3 that addresses this problem and suggest an effective
approach to it.

2.4. Do some research on PSP and present a brief presentation that describes the types of
measurements that an individual software engineer is asked to make and how those measure-
ment can be used to improve personal effectiveness.

2.5. The use of “scripts” (a required mechanism in TSP) is not universally praised within the
software community. Make a list of pros and cons regarding scripts and suggest at least two sit-
uations in which they would be useful and another two situations where they might provide less
benefit.

2.6. Read [Nog00] and write a two- or three-page paper that discusses the impact of “chaos”
on software engineering.

2.7. Provide three examples of software projects that would be amenable to the waterfall
model. Be specific.

62 PART ONE THE SOFTWARE PROCESS

pre75977_ch02.qxd 11/27/08 3:21 PM Page 62

2.8. Provide three examples of software projects that would be amenable to the prototyping
model. Be specific.

2.9. What process adaptations are required if the prototype will evolve into a deliverable
system or product?

2.10. Provide three examples of software projects that would be amenable to the incremental
model. Be specific.

2.11. As you move outward along the spiral process flow, what can you say about the software
that is being developed or maintained?

2.12. Is it possible to combine process models? If so, provide an example.

2.13. The concurrent process model defines a set of “states.” Describe what these states rep-
resent in your own words, and then indicate how they come into play within the concurrent
process model.

2.14. What are the advantages and disadvantages of developing software in which quality is
“good enough”? That is, what happens when we emphasize development speed over product
quality?

2.15. Provide three examples of software projects that would be amenable to the component-
based model. Be specific.

2.16. It is possible to prove that a software component and even an entire program is correct.
So why doesn’t everyone do this?

2.17. Are the Unified Process and UML the same thing? Explain your answer.

FURTHER READINGS AND INFORMATION SOURCES

Most software engineering textbooks consider traditional process models in some detail. Books
by Sommerville (Software Engineering, 8th ed., Addison-Wesley, 2006), Pfleeger and Atlee
(Software Engineering, 3d ed., Prentice-Hall, 2005), and Schach (Object-Oriented and Classical
Software Engineering, 7th ed., McGraw-Hill, 2006) consider traditional paradigms and discuss
their strengths and weaknesses. Glass (Facts and Fallacies of Software Engineering, Prentice-Hall,
2002) provides an unvarnished, pragmatic view of the software engineering process. Although
not specifically dedicated to process, Brooks (The Mythical Man-Month, 2d ed., Addison-Wesley,
1995) presents age-old project wisdom that has everything to do with process.

Firesmith and Henderson-Sellers (The OPEN Process Framework: An Introduction, Addison-
Wesley, 2001) present a general template for creating “flexible, yet discipline software
processes” and discuss process attributes and objectives. Madachy (Software Process Dynamics,
Wiley-IEEE, 2008) discusses modeling techniques that allow the interrelated technical and
social elements of the software process to be analyzed. Sharpe and McDermott (Workflow Mod-
eling: Tools for Process Improvement and Application Development, Artech House, 2001) present
tools for modeling both software and business processes.

Lim (Managing Software Reuse, Prentice Hall, 2004) discusses reuse from a manager’s
perspective. Ezran, Morisio, and Tully (Practical Software Reuse, Springer, 2002) and Jacobson,
Griss, and Jonsson (Software Reuse, Addison-Wesley, 1997) present much useful information on
component-based development. Heineman and Council (Component-Based Software Engineer-
ing, Addison-Wesley, 2001) describe the process required to implement component-based
systems. Kenett and Baker (Software Process Quality: Management and Control, Marcel Dekker,
1999) consider how quality management and process design are intimately connected to one
another.

Nygard (Release It!: Design and Deploy Production-Ready Software, Pragmatic Bookshelf,
2007) and Richardson and Gwaltney (Ship it! A Practical Guide to Successful Software Projects,
Pragmatic Bookshelf, 2005) present a broad collection of useful guidelines that are applicable to
the deployment activity.

CHAPTER 2 PROCESS MODELS 63

pre75977_ch02.qxd 11/27/08 3:21 PM Page 63

In addition to Jacobson, Rumbaugh, and Booch’s seminal book on the Unified Process
[Jac99], books by Arlow and Neustadt (UML 2 and the Unified Process, Addison-Wesley, 2005),
Kroll and Kruchten (The Rational Unified Process Made Easy, Addison-Wesley, 2003), and Farve
(UML and the Unified Process, IRM Press, 2003) provide excellent complementary information.
Gibbs (Project Management with the IBM Rational Unified Process, IBM Press, 2006) discusses
project management within the context of the UP.

A wide variety of information sources on software engineering and the software process are
available on the Internet. An up-to-date list of World Wide Web references that are relevant to
the software process can be found at the SEPA website: www.mhhe.com/engcs/compsci/
pressman/professional/olc/ser.htm.

64 PART ONE THE SOFTWARE PROCESS

pre75977_ch02.qxd 11/27/08 3:21 PM Page 64

