
  Chapter 2
Software Life-Cycle 
Models 
   Learning Objectives 

 After studying this chapter, you should be able to

  •  Describe how software products are developed in practice.  

  • Understand the evolution-tree life-cycle model.  

  • Appreciate the negative impact of change on software products.  

  • Utilize the iterative-and-incremental life-cycle model.  

  • Comprehend the impact of Miller’s Law on software production.  

  • Describe the strengths of the iterative-and-incremental life-cycle model.  

  • Realize the importance of mitigating risks early.  

  • Describe agile processes, including extreme programming.  

  • Compare and contrast a variety of other life-cycle models.      
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   Chapter 1  describes how software products would be developed in an ideal world. The 
theme of this chapter is what happens in practice. As will be explained, there are vast dif-
ferences between theory and practice. 

  2.1 Software Development in Theory 
  In an ideal world, a software product is developed as described in  Chapter 1 . As depicted 
schematically in  Figure 2.1 , the system is developed from scratch; � denotes the empty 
set. (See Just in Case You Wanted to Know Box 2.1 if you want to know the origin of the 
term   from scratch  .) First the client’s Requirements are determined, and then the Analysis 
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is performed. When the analysis artifacts are complete, the Design is produced. This is 
followed by the Implementation of the complete software product, which is then installed 
on the client’s computer. 
  However, software development is considerably different in practice for two reasons. 
First, software professionals are human and therefore make mistakes. Second, the client’s 
requirements can change while the software is being developed. In this chapter, both these 
issues are discussed in some depth, but fi rst we present a mini case study, based on the case 
study in [Tomer and Schach, 2000], that illustrates the issues involved. 

 FIGURE 2.1   
 Idealized 
software 
development. 
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 Winburg Mini Case Study 

  To reduce traffi c congestion in downtown Winburg, Indiana, the mayor convinces the 
city to set up a public transportation system. Bus-only lanes are to be established, 
and commuters will be encouraged to “park and ride”; that is, to park their cars in 
suburban parking lots and then take buses from there to work and back at a cost of 
one dollar per ride. Each bus is to have a fare machine that accepts only dollar bills. 
Passengers insert a bill into the slot as they enter the bus. Sensors inside the fare 
machine scan the bill, and the software in the machine uses an image recognition 

C
2.22.2

   Mini  ase Study 

Just in Case You Wanted to Know Box 2.1

The term from scratch, meaning “starting with nothing,” comes from 19th century sports 
terminology. Before roads (and running tracks) were paved, races had to be held on open 
ground. In many cases, the starting line was a scratch in the sand. A runner who had no 
advantage or handicap had to start from that line, that is, “from [the] scratch.”
 The term scratch has a different sporting connotation nowadays. A “scratch golfer” is 
one whose golfi ng handicap is zero.
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algorithm to decide whether the passenger has indeed inserted a valid dollar bill into 
the slot. It is important that the fare machine be accurate because, once the news gets 
out that any piece of paper will do the trick, fare income will plummet to effectively 
zero. Conversely, if the machine regularly rejects valid dollar bills, passengers will be 
reluctant to use the buses. In addition, the fare machine must be rapid. Passengers will 
be equally reluctant to use the buses if the machine spends 15 seconds coming to a 
decision regarding the validity of a dollar bill—it would take even a relatively small 
number of passengers many minutes to board a bus. Therefore, the requirements for 
the fare machine software include an average response time of less than 1 second and 
an average accuracy of at least 98 percent. 

     Episode 1    The fi rst version of the software is implemented.  
    Episode 2    Tests show that the required constraint of an average response time of 
1 second for deciding on the validity of a dollar bill is not achieved. In fact, on 
average, it takes 10 seconds to get a response. Senior management discovers the 
cause. It seems that, to get the required 98 percent accuracy, a programmer has been 
instructed by her manager to use double-precision numbers for all mathematical cal-
culations. As a result, every operation takes at least twice as long as it would with the 
usual single-precision numbers. The result is that the program is much slower than it 
should be, resulting in the long response time. Calculations then show that, despite 
what the manager told the programmer, the stipulated 98 percent accuracy can be at-
tained even if single-precision numbers are used. The programmer starts to make the 
necessary changes to the implementation.  
    Episode 3    Before the programmer can complete her work, further tests of the sys-
tem show that, even if the indicated changes to the implementation were made, the 
system would still have an average response time of over 4.5 seconds, nowhere near 
the stipulated 1 second. The problem is the complex image recognition algorithm. 
Fortunately, a faster algorithm has just been discovered, so the fare machine software 
is redesigned and reimplemented using the new algorithm. This results in the average 
response time being successfully achieved.  
    Episode 4    By now, the project is considerably behind schedule and way over 
budget. The mayor, a successful entrepreneur, has the bright idea of asking the 
software development team to try to increase the accuracy of the dollar bill rec-
ognition component of the system as much as possible, to sell the resulting pack-
age to vending machine companies. To meet this new requirement, a new design 
is adopted that improves the average accuracy to over 99.5 percent. Management 
decides to install that version of the software in the fare machines. At this point, 
development of the software is complete. The city is later able to sell its system 
to two small vending machine companies, defraying about one-third of the cost 
overrun.  
    Epilogue    A few years later, the sensors inside the fare machine become obsolete 
and need to be replaced by a newer model. Management suggests taking advantage 
of the change to upgrade the hardware at the same time. The software professionals 
point out that changing the hardware means that new software also is needed. They 
suggest reimplementing the software in a different programming language. At the 
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time of writing, the project is 6 months behind schedule and 25 percent over budget. 
However, everyone involved is confi dent that the new system will be more reliable 
and of higher quality, despite “minor discrepancies” in meeting its response time and 
accuracy requirements.   

   Figure 2.2  depicts the   evolution-tree life-cycle model   of the mini case study. 
The leftmost boxes represent Episode 1. As shown in the fi gure, the system was 
developed from scratch (�). The requirements (Requirements 1 ), analysis (Analysis 1 ), 
design (Design 1 ), and implementation (Implementation 1 ) followed in turn. Next, as 
previously described, trials of the fi rst version of the software showed that the average 
response time of 1 second could not be achieved and the implementation had to be 
modifi ed. The modifi ed implementation appears in  Figure 2.2  as Implementation 2 . 
However, Implementation 2  was never completed. That is why the rectangle repre-
senting Implementation 2  is drawn with a dotted line. 
  In Episode 3, the design had to be changed. Specifi cally, a faster image recogni-
tion algorithm was used. The modifi ed design (Design 3 ) resulted in a modifi ed imple-
mentation (Implementation 3 ). 
  Finally, in Episode 4, the requirements were changed (Requirements 4 ) to in-
crease the accuracy. This resulted in modifi ed specifi cations (Analysis 4 ), modifi ed 
design (Design 4 ), and modifi ed implementation (Implementation 4 ). 
  In  Figure 2.2 , the solid arrows denote development and the dashed arrows de-
note maintenance. For example, when the design is changed in Episode 3, Design 3  
replaced Design 1  as the design of Analysis 1 . 
  The evolution-tree model is an example of a   life-cycle model   (or   model  , 
for short), that is, the series of steps to be performed while the software product is 
developed and maintained. Another life-cycle model that can be used for the mini 

 FIGURE 2.2     The evolution-tree life-cycle model for the Winburg mini case study. (The rectangle drawn with a
dotted line denotes the implementation that was not completed.) 
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case study is the   waterfall life-cycle model   [Royce, 1970]; a simplifi ed version 
of the waterfall model is depicted in  Figure 2.3 . This classical life-cycle model can 
be viewed as the linear model of  Figure 2.1  with feedback loops. Then, if a fault is 
found during the design that was caused by a fault in the requirements, following the 
dashed upward arrows, the software developers can backtrack from the design up to 
the analysis and hence to the requirements and make the necessary corrections there. 
Then, they move down to the analysis, correct the specifi cation document to refl ect 
the corrections to the requirements, and in turn, correct the design document. Design 
activities can now resume where they were suspended when the fault was discovered. 
Again, the solid arrows denote development; the dashed arrows, maintenance. 
  The waterfall model can certainly be used to represent the Winburg mini case study, 
but, unlike the evolution-tree model of  Figure 2.2 , it cannot show the order of events. 
The evolution-tree model has a further advantage over the waterfall model. At the end 
of each episode we have a   baseline  , that is, a complete set of artifacts (recall that an 
  artifact   is a constituent component of a software product). There are four baselines 
in  Figure 2.2 . They are 

  At the end of Episode 1: Requirements 1 , Analysis 1 , Design 1 , Implementation 1   
  At the end of Episode 2: Requirements 1 , Analysis 1 , Design 1 , Implementation 2   
  At the end of Episode 3: Requirements 1 , Analysis 1 , Design 3 , Implementation 3   
  At the end of Episode 4: Requirements 4 , Analysis 4 , Design 4 , Implementation 4     

  The fi rst baseline is the initial set of artifacts; the second baseline refl ects the modifi ed 
(but never completed) Implementation 2  of Episode 2, together with the unchanged 
requirements, analysis, and design of Episode 1. The third baseline is the same as the 
fi rst baseline but with the design and implementation changed. The fourth baseline is the 
complete set of new artifacts shown in  Figure 2.2 . We revisit the concept of a baseline in 
 Chapters 5  and  16 .      
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  2.3 Lessons of the Winburg Mini Case Study 
  The Winburg mini case study depicts the development of a software product that goes awry 
for a number of unrelated causes, such as a poor implementation strategy (the unnecessary 
use of double-precision numbers) and the decision to use an algorithm that was too slow. 
In the end, the project was a success. However, the obvious question is, Is software devel-
opment really as chaotic in practice? In fact, the mini case study is far less traumatic than 
many, if not the majority of, software projects. In the Winburg mini case study, there were 
only two new versions of the software because of faults (the inappropriate use of double-
precision numbers; the utilization of an algorithm that could not meet the response time 
requirement), and only one new version because of a change made by the client (the need 
for increased accuracy). 
  Why are so many changes to a software product needed? First, as previously stated, soft-
ware professionals are human and therefore make mistakes. Second, a software product is a 
model of the real world, and the real world is continually changing. This issue is discussed 
at greater length in Section 2.4. 
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 Teal Tractors Mini Case Study 

  Teal Tractors, Inc., sells tractors in most areas of the United States. The company 
has asked its software division to develop a new product that can handle all aspects 
of its business. For example, the product must be able to handle sales, inventory, and 
commissions paid to the sales staff, as well as providing all necessary accounting 
functions. While this software product is being implemented, Teal Tractors buys a 
Canadian tractor company. The management of Teal Tractors decides that, to save 
money, the Canadian operations are to be integrated into the U.S. operations. That 
means that the software has to be changed before it is completed:

   1. It must be modifi ed to handle additional sales regions.  
  2. It must be extended to handle those aspects of the business that are handled differ-

ently in Canada, such as taxes.  
  3. It must be extended to handle two different currencies, U.S. dollars and Canadian 

dollars.    

  Teal Tractors is a rapidly growing company with excellent future prospects. The 
takeover of the Canadian tractor company is a positive development, one that may 
well lead to even greater profi ts in future years. But, from the viewpoint of the soft-
ware division, the purchase of the Canadian company could be disastrous. Unless the 
requirements, analysis, and design have been performed with a view to incorporating 
possible future extensions, the work involved in adding the Canadian sales regions may 
be so great that it might be more effective to discard everything done to date and start 
from scratch. The reason is that changing the product at this stage is similar to trying to 
fi x a software product late in its life cycle (see  Figure 1.6 ). Extending the software to 

C   Mini  ase Study 

2.42.4
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handle aspects specifi c to the Canadian market, as well as Canadian currency, may be 
equally hard. 
  Even if the software has been well thought out and the original design is indeed 
extensible, the design of the resulting patched-together product cannot be as cohesive as 
it would have been if it had been developed from the very beginning to cater to both the 
United States and Canada. This can have severe implications for future maintenance. 
  The software division of Teal Tractors is a victim of the   moving-target problem  . 
That is, while the software is being developed, the requirements change. It does not 
matter that the reason for the change is otherwise extremely worthwhile. The fact is 
that the takeover of the Canadian company could well be detrimental to the quality of 
the software being developed.    

  In some cases, the reason for the moving target is less benign. Sometimes a powerful 
senior manager within an organization keeps changing his or her mind regarding the func-
tionality of a software product being developed. In other cases, there is   feature creep  , a 
succession of small, almost trivial, additions to the requirements. But whatever the reason 
may be, frequent changes, no matter how minor they may seem, are harmful to the health 
of a software product. It is important that a software product be designed as a set of com-
ponents that are as independent as possible, so that a change to one part of the software 
does not induce a fault in an apparently unrelated part of the code, a so-called   regression 
fault  . When numerous changes are made, the effect is to induce dependencies within the 
code. Finally, there are so many dependencies that virtually any change induces one or 
more regression faults. At that time, the only thing that can be done is to redesign the entire 
software product and reimplement it. 
  Unfortunately, there is no known solution to the moving-target problem. With regard 
to positive changes to requirements, growing companies are always going to change, and 
these changes have to be refl ected in the mission-critical software products of the company. 
As for negative changes, if the individual calling for those changes has suffi cient clout, 
nothing can be done to prevent the changes being implemented, to the detriment of the 
further maintainability of the software product.   

  2.5 Iteration and Incrementation 
  As a consequence of both the moving-target problem and the need to correct the inevitable 
mistakes made while a software product is being developed, the life cycle of actual soft-
ware products resembles the evolution-tree model of  Figure 2.2  or the waterfall model of 
 Figure 2.3 , rather than the idealized chain of  Figure 2.1 . One consequence of this reality 
is that it does not make much sense to talk about (say) “  the   analysis phase.” Instead, the 
operations of the analysis phase are spread out over the life cycle. Similarly,  Figure 2.2  
shows four different versions of the implementation, one of which (Implementation 2 ) 
was never completed because of the moving-target problem. 
  Consider successive versions of an artifact, for example, the specifi cation document or 
a code module. From this viewpoint, the basic process is iterative. That is, we produce the 
fi rst version of the artifact, then we revise it and produce the second version, and so on. Our 
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intent is that each version is closer to our target than its predecessor and fi nally we con-
struct a version that is satisfactory.   Iteration   is an intrinsic aspect of software engineering, 
and iterative life-cycle models have been used for over 30 years [Larman and Basili, 2003]. 
For example, the waterfall model, which was fi rst put forward in 1970, is iterative (but not 
incremental). 
  A second aspect of developing real-world software is the restriction imposed on us by 
  Miller’s Law  . In 1956, George Miller, a professor of psychology, showed that, at any one 
time, we humans are capable of concentrating on only approximately seven chunks (units 
of information) [Miller, 1956]. However, a typical software artifact has far more than seven 
chunks. For example, a code artifact is likely to have considerably more than seven variables, 
and a requirements document is likely to have many more than seven requirements. One way 
we humans handle this restriction on the amount of information we can handle at any one 
time is to use   stepwise refi nement  . That is, we concentrate on those aspects that are cur-
rently the most important and postpone until later those aspects that are currently less critical. 
In other words, every aspect is eventually handled but in order of current importance. This 
means that we start off by constructing an artifact that solves only a small part of what we 
are trying to achieve. Then, we consider further aspects of the problem and add the resulting 
new pieces to the existing artifact. For example, we might construct a requirements document 
by considering the seven requirements we consider the most important. Then, we would con-
sider the seven next most important requirements, and so on. This is an incremental process. 
  Incrementation   is also an intrinsic aspect of software engineering; incremental software 
development is over 45 years old [Larman and Basili, 2003]. 
  In practice, iteration and incrementation are used in conjunction with one another. That is, 
an artifact is constructed piece by piece (incrementation), and each increment goes through 
multiple versions (iteration). These ideas are illustrated in  Figure 2.2 , which represents the life 
cycle for the Winburg mini case study (Sections 2.2 and 2.3). As shown in that fi gure, there 
is no single “requirements phase” as such. Instead, the client’s requirements are extracted 
and analyzed twice, yielding the original requirements (Requirements 1 ) and the modifi ed 
requirements (Requirements 4 ). Similarly, there is no single “implementation phase,” but 
rather four separate episodes in which the code is produced and then modifi ed. 
  These ideas are generalized in  Figure 2.4 , which refl ects the basic concepts underly-
ing the   iterative-and-incremental life-cycle model   [Jacobson, Booch, and Rumbaugh, 
1999]. The fi gure shows the development of a software product in four increments, labeled 
Increment A, Increment B, Increment C, and Increment D. The horizontal axis is time, 
and the vertical axis is person-hours (one person-hour is the amount of work that one person 
can do in 1 hour), so the shaded area under each curve is the total effort for that increment. 
  It is important to appreciate that  Figure 2.4  depicts just one possible way a software 
product can be decomposed into increments. Another software product may be constructed 
in just 2 increments, whereas a third may require 14. Furthermore, the fi gure is not intended 
to be an accurate representation of precisely how a software product is developed. Instead, 
it shows how the emphasis changes from iteration to iteration. 
  The sequential phases of  Figure 2.1  are artifi cial constructs. Instead, as explicitly 
refl ected in  Figure 2.4 , we must acknowledge that different   workfl ows   (activities) are 
performed over the entire life cycle. There are fi ve   core workfl ows  , the   requirements 
workfl ow  ,   analysis workfl ow  ,   design workfl ow  ,   implementation workfl ow  , and 
  test workfl ow  , and, as stated in the previous sentence, all fi ve are performed over the life 
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cycle of a software product. However, there are times when one workfl ow predominates 
over the other four. 
  For example, at the beginning of the life cycle, the software developers extract an initial 
set of requirements. In other words, at the beginning of the iterative-and-incremental life 
cycle, the requirements workfl ow predominates. These requirements artifacts are extended 
and modifi ed during the remainder of the life cycle. During that time, the other four 
workfl ows (analysis, design, implementation, and test) predominate. In other words, the 
requirements workfl ow is the major workfl ow at the beginning of the life cycle, but its rela-
tive importance decreases thereafter. Conversely, the implementation and test workfl ows 
occupy far more of the time of the members of the software development team toward the 
end of the life cycle than they do at the beginning. 
  Planning and documentation activities are performed throughout the iterative-and-
incremental life cycle. Furthermore, testing is a major activity during each iteration, and 
particularly at the end of each iteration. In addition, the software as a whole is thoroughly 
tested once it has been completed; at that time, testing and then modifying the implemen-
tation in the light of the outcome of the various tests is virtually the sole activity of the 
software team. This is refl ected in the test workfl ow of  Figure 2.4 . 
   Figure 2.4  shows four increments. Consider Increment A, depicted by the column on 
the left. At the beginning of this increment, the requirements team members determine the 
client’s requirements. Once most of the requirements have been determined, the fi rst ver-
sion of part of the analysis can be started. When suffi cient progress has been made with 
the analysis, the fi rst version of the design can be started. Even some coding is often done 
during this fi rst increment, perhaps in the form of a proof-of-concept prototype to test 
the feasibility of part of the proposed software product. Finally, as previously mentioned, 
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planning, testing, and documentation activities start on Day One and continue from then 
on, until the software product is fi nally delivered to the client. 
  Similarly, the primary concentration during Increment B is on the requirements and 
analysis workfl ows, and then on the design workfl ow. The emphasis during Increment C 
is fi rst on the design workfl ow, and then on the implementation workfl ow and test workfl ow. 
Finally, during Increment D, the implementation workfl ow and test workfl ow dominate. 
  As refl ected in  Figure 1.4 , about one-fi fth of the total effort is devoted to the require-
ments and analysis workfl ows (together), another one-fi fth to the design workfl ow, and 
about three-fi fths to the implementation workfl ow. The relative total sizes of the shaded 
areas in  Figure 2.4  refl ect these values. 
  There is iteration during each increment of  Figure 2.4 . This is shown in  Figure 2.5 , 
which depicts three iterations during Increment B. ( Figure 2.5  is an enlarged view of the 
second column of  Figure 2.4 .) As shown in  Figure 2.5 , each iteration involves all fi ve work-
fl ows but again in varying proportions. 
  Again, it must be stressed that  Figure 2.5  is not intended to show that every incre-
ment involves exactly three iterations. The number of iterations varies from increment to 
increment. The purpose of  Figure 2.5  is to show the iteration within each increment and 
repeat that all fi ve workfl ows (requirements, analysis, design, implementation, and testing, 
together with planning and documentation) are carried out during almost every iteration, 
although in varying proportions each time. 
  As previously explained,  Figure 2.4  refl ects the incrementation intrinsic to the devel-
opment of every software product.  Figure 2.5  explicitly displays the iteration that under-
lies incrementation. Specifi cally,  Figure 2.5  depicts three consecutive iterative steps, as 
opposed to one large incrementation. In more detail, Iteration B.1 consists of requirements, 

 FIGURE 2.5  
   The three 
iterations of 
Increment B 
of the iterative-
and-incremental 
life-cycle model 
of  Figure 2.4 . 
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analysis, design, implementation, and test workfl ows, represented by the leftmost dashed 
rectangle with rounded corners. The iteration continues until the artifacts of each of the fi ve 
workfl ows are satisfactory. 
  Next, all fi ve sets of artifacts are iterated in Iteration B.2. This second iteration is simi-
lar in nature to the fi rst. That is, the requirements artifacts are improved, which in turn trig-
gers improvements to the analysis artifacts, and so on, as refl ected in the second iteration 
of  Figure 2.5 , and similarly for the third iteration. 
  The process of iteration and incrementation starts at the beginning of Increment A and 
continues until the end of Increment D. The completed software product is then installed 
on the client’s computer. 
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C   Mini  ase Study 

2.62.6  Winburg Mini Case Study Revisited 

   Figure 2.6  shows the evolution-tree model of the Winburg mini case study ( Figure 2.2 ) 
superimposed on the iterative-and-incremental model (the test workfl ow is not shown 
because the evolution-tree model assumes continual testing, explained in Section 1.7). 
 Figure 2.6  sheds additional light on the nature of incrementation:

   • Increment A corresponds to Episode 1, Increment B corresponds to Episode 2, 
and so on.  

 FIGURE 2.6     The evolution-tree life-cycle model for the Winburg mini case study ( Figure 2.2 ) superimposed on 
the iterative-and-incremental life-cycle model. 
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 •  From the viewpoint of the iterative-and-incremental model, two of the increments 
do not include all four workfl ows. In more detail, Increment B (Episode 2) in- 
cludes only the implementation workfl ow, and Increment C (Episode 3) includes 
only the design workfl ow and the implementation workfl ow. The iterative-and-
incremental model does not require that every workfl ow be performed during 
every increment.  

 •  Furthermore, in  Figure 2.4  most of the requirements workfl ow is performed 
in Increment A and Increment B, whereas in  Figure 2.6  it is performed in 
Increment A and Increment D. Also, in  Figure 2.4  most of the analysis is per-
formed in Increment B, whereas in  Figure 2.6  the analysis workfl ow is performed 
in Increment A and Increment D. This indicates that neither  Figure 2.4  nor 
 Figure 2.6  represents the way every software product is built. Instead, each fi gure 
shows the way that one particular software product is built, highlighting the under-
lying iteration and incrementation.  

 •  The small size and abrupt termination of the implementation workfl ow during 
Increment B (Episode 2) of  Figure 2.6  shows that Implementation 2  was not 
completed. The gray piece refl ects the part of the implementation workfl ow that 
was not performed.  

 •  The three dashed arrows of the evolution-tree model show that each incre-
ment constitutes maintenance of the previous increment. In this example, the 
second and third increments are instances of corrective maintenance. That 
is, each increment corrects faults in the previous increment. As previously 
explained, Increment B (Episode 2) corrects the implementation workfl ow by 
replacing double-precision variables with the usual single-precision variables. 
Increment C (Episode 3) corrects the design workfl ow by using a faster image 
recognition algorithm, thereby enabling the response time requirement to be 
met. Corresponding changes then have to be made to the implementation work-
fl ow. Finally, in Increment D (Episode 4) the requirements are changed to 
stipulate improved overall accuracy, an instance of perfective maintenance. Cor-
responding changes are then made to the analysis workfl ow, design workfl ow, 
and implementation workfl ow.         

  2.7  Risks and Other Aspects of Iteration 
and Incrementation 

  Another way of looking at iteration and incrementation is that the project as a whole is 
divided into smaller mini projects (or increments). Each mini project extends the require-
ments, analysis, design, implementation, and testing artifacts. Finally, the resulting set of 
artifacts constitutes the complete software product. 
  In fact, each mini project consists of more than just extending the artifacts. It is essential 
to check that each artifact is correct (the test workfl ow) and make any necessary changes 
to the relevant artifacts. This process of checking and modifying, then rechecking and 
remodifying, and so on, is clearly iterative in nature. It continues until the members of the 
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development team are satisfi ed with all the artifacts of the current mini project (or incre-
ment). When that happens, they proceed to the next increment. 
  Comparing  Figure 2.3  (the waterfall model) with  Figure 2.5  (view of the iterations within 
Increment B) shows that each iteration can be viewed as a small but complete waterfall 
model. That is, during each iteration the members of the development team go through the 
classical requirements, analysis, design, and implementation phases on a specifi c portion of 
the software product. From this viewpoint, the iterative-and-incremental model of  Figures 2.4  
and  2.5  can be viewed as a consecutive series of waterfall models. 
  The iterative-and-incremental model has many strengths:

   1. Multiple opportunities are offered for checking that the software product is correct. 
Every iteration incorporates the test workfl ow, so every iteration is another chance to 
check all the artifacts developed up to this point. The later faults are detected and cor-
rected, the higher is the cost, as shown in  Figure 1.6 . Unlike the classical waterfall 
model, each of the many iterations of the iterative-and-incremental model offers a fur-
ther opportunity to fi nd faults and correct them, thereby saving money.  

  2. The robustness of the underlying architecture can be determined relatively early in 
the life cycle. The   architecture   of a software product includes the various compo-
nent artifacts and how they fit together. An analogy is the architecture of a cathe-
dral, which might be described as Romanesque, Gothic, or Baroque, among other 
possibilities. Similarly, the architecture of a software product might be described 
as object-oriented ( Chapter 7 ), pipes and filters (UNIX or Linux components), or 
client–server (with a central server providing file storage for a network of client 
computers). The architecture of a software product developed using the iterative-
and-incremental model must have the property that it can be extended continually 
(and, if necessary, easily changed) to incorporate the next increment. Being able 
to handle such extensions and changes without falling apart is called   robustness  . 
Robustness is an important quality during development of a software product; it is 
vital during postdelivery maintenance. So, if a software product is to last through 
the usual 12, 15, or more years of postdelivery maintenance, the underlying archi-
tecture has to be robust. When an iterative-and-incremental model is used, it soon 
becomes apparent whether or not the architecture is robust. If, in the course of 
incorporating (say) the third increment, it is clear that the software developed to 
date has to be drastically reorganized and large parts reimplemented, then it is clear 
that the architecture is not sufficiently robust. The client must decide whether to 
abandon the project or start again from scratch. Another possibility is to redesign 
the architecture to be more robust, and then reuse as much of the current artifacts 
as possible before proceeding to the next increment. Another reason why a robust 
architecture is so important is the moving-target problem (Section 2.4). It is all but 
certain that the client’s requirements will change, either because of growth within 
the client’s organization or because the client keeps changing his or her mind as 
to what the target software has to do. The more robust the architecture, the more 
resilient to change the software will be. It is not possible to design an architecture 
that can cope with too many drastic changes. But, if the required changes are rea-
sonable in scope, a robust architecture should be capable of incorporating those 
changes without having to be drastically restructured.  
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  3. The iterative-and-incremental model enables us to mitigate risks early.   Risks   are invariably 
involved in software development and maintenance. In the Winburg mini case study, for 
example, the original image recognition algorithm was not fast enough; there is an ever-
present risk that a completed software product will not meet its time constraints. Develop-
ing a software product incrementally enables us to mitigate such risks early in the life cycle.
For example, suppose a new local area network (LAN) is being developed and there 
is concern that the current network hardware is inadequate for the new software prod-
uct. Then, the fi rst one or two iterations are directed toward constructing those parts of 
the software that interface with the network hardware. If it turns out that, contrary to the 
developers’ fears, the network has the necessary capability, the developers can proceed with 
the project, confi dent that this risk has been mitigated. On the other hand, if the network 
indeed cannot cope with the additional traffi c that the new LAN generates, this is reported 
to the client early in the life cycle, when only a small proportion of the budget has been 
spent. The client can now decide whether to cancel the project, extend the capabilities of the 
existing network, buy a new and more powerful network, or take some other action.  

  4. We always have a working version of the software. Suppose a software product is developed 
using the classical life-cycle model of  Figure 2.1 . Only at the very end of the project is there 
a working version of the software product. In contrast, when the iterative-and-incremental 
life-cycle model is used, at the end of each iteration, there is a working version of part of the 
overall target software product. The client and the intended users can experiment with that 
version and determine what changes are needed to ensure that the future complete imple-
mentation meets their needs. These changes can be made to a subsequent increment, and 
the client and users can then determine if further changes are needed. A variation on this is 
to deliver partial versions of the software product, not only for experimentation but also to 
smooth the introduction of the new software product in the client organization. Change is 
almost always perceived as a threat. All too often, users fear that the introduction of a new 
software product within the workplace will result in them losing their jobs to a computer. 
However, introducing a software product gradually can have two benefi ts. First, the under-
standable fear of being replaced by a computer is diminished. Second, it is generally easier 
to learn the functionality of a complex software product if that functionality is introduced 
stepwise over a period of months, rather than as a whole.  

  5. There is empirical evidence that the iterative-and-incremental life cycle works. The pie 
chart of  Figure 1.1  shows the results of the report from the Standish Group on projects 
completed in 2006 [Rubenstein, 2007]. In fact, this report (the so-called CHAOS Report—
see Just in Case You Wanted to Know Box 2.2) is produced every 2 years.  Figure 2.7  
shows the results for 1994 through 2006. The percentage of successful products increased 
steadily from 16 percent in 1994 to 34 percent in 2002, but then decreased to 29 percent in 
2004. In both the 2002 [Softwaremag.com, 2004] and 2004 [Hayes, 2004] reports, one of 
the factors associated with the successful projects was the use of an iterative process. (The 
reasons given for the decrease in the percentage of successful projects in 2004 included: 
more large projects than in 2002, use of the waterfall model, lack of user involvement, and 
lack of support from senior executives [Hayes, 2004].) Then, the percentage of successful 
projects increased again in the 2006 study to 35 percent. The president of the Standish 
Group, Jim Johnson, attributed this increase to three factors: better project management, 
the emerging Web infrastructure, and (again) iterative development [Rubenstein, 2007].    
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  2.8 Managing Iteration and Incrementation 
  At fi rst glance, the iterative-and-incremental model of  Figures 2.4  and  2.5  looks totally cha-
otic. Instead of the orderly progression from requirements to implementation of the waterfall 
model ( Figure 2.3 ), it appears that developers do whatever they like, perhaps some coding in 
the morning, an hour or two of design after lunch, and then half an hour of specifying before 
going home. That is   not   the case. On the contrary, the iterative-and-incremental model is as 
regimented as the waterfall model, because as previously pointed out, developing a software 
product using the iterative-and-incremental model is nothing more or less than developing a 
series of smaller software products, all using the waterfall model. 

  FIGURE 2.7     
 Results of the 
Standish Group 
CHAOS Report 
from 1994 to 
2006.    
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28% 49% 23%

26% 46% 28%

27% 33% 40%

16% 53% 31%

Completed on time and within budget
Late, over budget, or with features missing
Canceled before completion

 Just in Case You Wanted to Know Box 2.2 

 The term   CHAOS   is an acronym. For some unknown reason, the Standish Group keeps the 
acronym top secret. They state [Standish, 2003]: 

 Only a few people at The Standish Group, and any one of the 360 people who received and 
saved the T-shirts we gave out after they completed the fi rst survey in 1994, know what the 
CHAOS letters represent. 
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  In more detail, as shown in  Figure 2.3 , developing a software product using the 
waterfall model means successively performing the requirements, analysis, design, and 
implementation phases (in that order) on the software product as a whole. If a problem 
is encountered, the feedback loops of  Figure 2.3  (dashed arrows) are followed; that is, 
iteration (maintenance) is performed. However, if the same software product is devel-
oped using the iterative-and-incremental model, the software product is treated as a 
set of increments. For each increment in turn, the requirements, analysis, design, and 
implementation phases (in that order) are repeatedly performed   on that increment   until 
it is clear that no further iteration is needed. In other words, the project as a whole is 
broken up into a series of waterfall mini projects. During each mini project, iteration is 
performed as needed, as shown in  Figure 2.5 . Therefore, the reason the previous para-
graph stated that the iterative-and-incremental model is as regimented as the waterfall 
model is because the iterative-and-incremental model   is   the waterfall model, applied 
successively.   

  2.9 Other Life-Cycle Models 
  We now consider a number of other life-cycle models, including the spiral model and the 
synchronize-and-stabilize model. We begin with the infamous code-and-fi x model. 

  2.9.1 Code-and-Fix Life-Cycle Model 
 It is unfortunate that so many products are developed using what might be termed the 
  code-and-fi x life-cycle model  . The product is implemented without requirements or 
specifi cations, or any attempt at design. Instead, the developers simply throw code together 
and rework it as many times as necessary to satisfy the client. This approach is shown in 
 Figure 2.8 , which clearly displays the absence of requirements, specifi cations, and design. 
Although this approach may work well on short programming exercises 100 or 200 lines 
long, the code-and-fi x model is totally unsatisfactory for products of any reasonable size. 
 Figure 1.6  shows that the cost of changing a software product is relatively small if the 
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change is made during the requirements, analysis, or design phases but grows unaccept-
ably large if changes are made after the product has been coded or, worse, if it has already 
been delivered and installed on the client’s computer. Hence, the cost of the code-and-fi x 
approach is actually far greater than the cost of a properly specifi ed and meticulously de-
signed product. In addition, maintenance of a product can be extremely diffi cult without 
specifi cation or design documents, and the chances of a regression fault occurring are con-
siderably greater. Instead of the code-and-fi x approach, it is essential that, before develop-
ment of a product begins, an appropriate life-cycle model be chosen. 
  Regrettably, all too many projects use the code-and-fi x model. The problem is particu-
larly acute in organizations that measure progress solely in terms of lines of code, so mem-
bers of the software development team are pressured into churning out as many lines of 
code as possible, starting on Day One of the project. The code-and-fi x model is the easiest 
way to develop software—and by far the worst way. 
  A simplifi ed version of the waterfall model was presented in Section 2.2. We now con-
sider that model in more detail.  

  2.9.2 Waterfall Life-Cycle Model 
 The   waterfall life-cycle model   was fi rst put forward by Royce [1970].  Figure 2.9  shows 
the feedback loops for maintenance while the product is being developed, as refl ected in 
 Figure 2.3 , the simplifi ed waterfall model.  Figure 2.9  also shows the feedback loops for 
postdelivery maintenance. 
  A critical point regarding the waterfall model is that no phase is complete until the 
documentation for that phase has been completed and the products of that phase have been 
approved by the software quality assurance (SQA) group. This carries over into modifi ca-
tions; if the products of an earlier phase have to be changed as a consequence of following 
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a feedback loop, that earlier phase is deemed to be complete only when the documentation 
for the phase has been modifi ed and the modifi cations have been checked by the SQA 
group. Inherent in every phase of the waterfall model is testing. Testing is not a separate 
phase to be performed only after the product has been constructed, nor is it to be performed 
only at the end of each phase. Instead, as stated in Section 1.7, testing should proceed con-
tinually throughout the software process. In particular, during maintenance, it is necessary 
to ensure not only that the modifi ed version of the product still does what the previous ver-
sion did—and still does it correctly (regression testing)—but that it also satisfi es any new 
requirements imposed by the client. 
  The waterfall model has many strengths, including the enforced disciplined 
approach—the stipulation that documentation be provided at each phase and the require-
ment that all the products of each phase (including the documentation) be meticulously 
checked by SQA. However, the fact that the waterfall model is documentation driven 
can also be a weakness. To see this, consider the following two somewhat bizarre 
scenarios. 
  First, Joe and Jane Johnson decide to build a house. They consult with an architect. 
Instead of showing them sketches, plans, and perhaps a scale model, the architect gives 
them a 20-page single-spaced typed document describing the house in highly technical 
terms. Even though both Joe and Jane have no previous architectural experience and hardly 
understand the document, they enthusiastically sign it and say, “Go right ahead, build the 
house!” 
  Another scenario is as follows: Mark Marberry buys his suits by mail order. Instead 
of mailing him pictures of their suits and samples of available cloths, the company sends 
Mark a written description of the cut and the cloth of their products. Mark then orders a suit 
solely on the basis of a written description. 
  The preceding two scenarios are highly unlikely. Nevertheless, they typify precisely the 
way software is often constructed using the waterfall model. The process begins with the 
specifi cations. In general, specifi cation documents are long, detailed, and, quite frankly, 
boring to read. The client is usually inexperienced in the reading of software specifi cations, 
and this diffi culty is compounded by the fact that specifi cation documents are usually writ-
ten in a style with which the client is unfamiliar. The diffi culty is even worse when the 
specifi cations are written in a formal specifi cation language like Z [Spivey, 1992] (Section 
12.9). Nevertheless, the client proceeds to sign off on the specifi cation document, whether 
properly understood or not. In many ways there is little difference between Joe and Jane 
Johnson contracting to have a house built from a written description that they only partially 
comprehend and clients approving a software product described in terms of a specifi cation 
document that they only partially understand. 
  Mark Marberry and his mail-order suits may seem bizarre in the extreme, but that is 
precisely what happens when the waterfall model is used in software development. The fi rst 
time that the client sees a working product is only after the entire product has been coded. 
Small wonder that software developers live in fear of the sentence, “I know this is what I 
asked for, but it isn’t really what I wanted.” 
  What has gone wrong? There is a considerable difference between the way a client un-
derstands a product as described by the specifi cation document and the actual product. The 
specifi cations exist only on paper; the client therefore cannot really understand what the 
product itself will be like. The waterfall model, depending as it does so crucially on written 
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specifi cations, can lead to the construction of products that simply do not meet the client’s 
real needs. 
  In fairness it should be pointed out that, just as an architect can help a client understand 
what is to be built by providing scale models, sketches, and plans, so the software engineer 
can use graphical techniques, such as data fl ow diagrams (Section 12.3) or UML diagrams 
( Chapter 17 ) to communicate with the client. The problem is that these graphical aids do 
not describe how the fi nished product will work. For example, there is a considerable dif-
ference between a fl owchart (a diagrammatic description of a product) and the working 
product itself.   In this book, two solutions are put forward for solving the problem that the 
specifi cation document generally does not describe a product in a way that enables the cli-
ent to determine whether the proposed product meets his or her needs. The object-oriented 
solution is described in  Chapters 11  and  13 . The classical solution is the rapid-prototyping 
model, described in Section 2.9.3.  

  2.9.3 Rapid-Prototyping Life-Cycle Model 
 A   rapid prototype   is a working model that is functionally equivalent to a subset of the 
product. For example, if the target product is to handle accounts payable, accounts receiv-
able, and warehousing, then the rapid prototype might consist of a product that performs 
the screen handling for data capture and prints the reports, but does no fi le updating or error 
handling. A rapid prototype for a target product that is to determine the concentration of 
an enzyme in a solution might perform the calculation and display the answer, but without 
doing any validation or reasonableness checking of the input data. 
  The fi rst step in the   rapid-prototyping life-cycle model   depicted in  Figure 2.10  is 
to build a rapid prototype and let the client and future users interact and experiment with 
the rapid prototype. Once the client is satisfi ed that the rapid prototype indeed does most of 
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what is required, the developers can draw up the specifi cation document with some assur-
ance that the product meets the client’s real needs. 
  Having produced the rapid prototype, the software process continues as shown in 
 Figure 2.10 . A major strength of the rapid-prototyping model is that the development 
of the product is essentially linear, proceeding from the rapid prototype to the delivered 
product; the feedback loops of the waterfall model ( Figure 2.9 ) are less likely to be 
needed in the rapid-prototyping model. There are a number of reasons for this. First, the 
members of the development team use the rapid prototype to construct the specifi cation 
document. Because the working rapid prototype has been validated through interaction 
with the client, it is reasonable to expect that the resulting specifi cation document will be 
correct. Second, consider the design. Even though the rapid prototype has (quite rightly) 
been hurriedly assembled, the design team can gain insight from it—at worst it will be of 
the “how not to do it” variety. Again, the feedback loops of the waterfall model are less 
likely to be needed here. 
  Implementation comes next. In the waterfall model, implementation of the design some-
times leads to design faults coming to light. In the rapid-prototyping model, the fact that a 
preliminary working version of the software product has already been built tends to lessen 
the need to repair the design during or after implementation. The prototype has given some 
insights to the design team, even though it may refl ect only partial functionality of the 
complete target product. 
  Once the product has been accepted by the client and installed, postdelivery main-
tenance begins. Depending on the specifi c maintenance task that has to be performed, 
the cycle is reentered either at the requirements, analysis, design, or implementation 
phase. 
  An essential aspect of a rapid prototype is embodied in the word   rapid  . The develop-
ers should endeavor to construct the rapid prototype as rapidly as possible to speed up the 
software development process. After all, the sole use of the rapid prototype is to determine 
what the client’s real needs are; once this has been determined, the rapid prototype imple-
mentation is discarded but the lessons learned are retained and used in subsequent develop-
ment phases. For this reason, the internal structure of the rapid prototype is not relevant. 
What is important is that the prototype be built rapidly and modifi ed rapidly to refl ect the 
client’s needs. Therefore, speed is of the essence. 
  Rapid prototyping is discussed in greater detail in  Chapter 11 .  

  2.9.4 Open-Source Life-Cycle Model 
 Almost all successful   open-source software   projects go through two informal phases. 
First, a single individual has an idea for a program, such as an operating system (Linux), a 
Net browser (Firefox), or a Web server (Apache). He or she builds an initial version, which 
is then made available for distribution free of charge to anyone who would like a copy; 
nowadays, this is done via the Internet, at sites like SourceForge.net and FreshMeat.net. 
If someone downloads a copy of the initial version and thinks that the program fulfi lls a 
need, he or she will start to use that program. 
  If there is suffi cient interest in the program, the project moves gradually into informal 
phase two. Users become co-developers, in that some users report defects and others sug-
gest ways of fi xing those defects. Some users put forward ideas for extending the program, 
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and others implement those ideas. As the program expands in functionality, yet other users 
port the program so that it can run on additional operating system/hardware combinations. 
A key aspect is that individuals usually work on an open-source project in their spare time 
on a voluntary basis; they are not paid to participate. 
  Now look more closely at the three activities of the second informal phase:

   1. Reporting and correcting defects is corrective maintenance.  
  2. Adding additional functionality is perfective maintenance.  
  3. Porting the program to a new environment is adaptive maintenance.    

  In other words, the second informal phase of the open-source life-cycle model consists 
solely of postdelivery maintenance, as shown in  Figure 2.11 . In fact, the term   co-developers   
in the second paragraph of this section should rather be   co-maintainers  . 
  There are a number of key differences between closed-source and open-source software 
life-cycle models: 

  • Closed-source software is maintained and tested by teams of employees of the organiza-
tion that owns the software. Users sometimes submit defect reports. However, these are 
restricted to   failure reports   (reports of observed incorrect behavior); users have no 
access to the source code, so they cannot possibly submit   fault reports   (reports that 
describe where the source code is incorrect and how to correct it). 

   In contrast, open-source software is generally maintained by unpaid volunteers. Users 
are strongly encouraged to submit defect reports. Although all users have access to the 
source code, only the minority have the inclination and the time, as well as the necessary 
skills, to peruse the source code and submit fault reports (“fi xes”); most defect reports 
are therefore failure reports. There is generally a   core group   of dedicated maintainers 
who take responsibility for managing the open-source project. Some members of the 
  peripheral group  , that is, the users who are not members of the core group, choose to 
submit defect reports from time to time. The members of the core group are responsible 
for ensuring that these defects are corrected. In more detail, when a fault report is sub-
mitted, a core group member checks that the fi x indeed solves the problem and modifi es 
the source code appropriately. When a failure report is submitted, a member of the core 
group will either personally determine the fi x or assign that task to another volunteer, 
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often a member of the peripheral group who is eager to become more involved in the 
open-source project. Again, the power to install the fi x in the software is restricted to 
members of the core group.  

 •  New versions of closed-source software are typically released roughly once a year. Each 
new version is carefully checked by the software quality assurance group before release; 
a wide variety of test cases are run. 

   In contrast, a dictum of the open-source movement is “Release early. Release often” 
[Raymond, 2000]. That is, the core group releases a new version of an open-source prod-
uct as soon as it is ready, which may be a month or even only a day after the previous 
version was released. This new version is released after minimal testing; it is assumed 
that more extensive testing will be performed by the members of the peripheral group. 
A new version may be installed by literally hundreds of thousands of users within a day 
or two of its release. These users do not run test cases as such. However, in the course of 
utilizing the new version on their computer, they encounter failures, which they report 
via e-mail. In this way, faults in the new version (as well as deeper faults in previous 
versions) come to light and are corrected.    

  Comparing  Figures 2.8 ,  2.10 , and  2.11 , we see that the open-source life-cycle model 
has features in common with both the code-and-fi x model and the rapid-prototyping 
model. In all three life-cycle models, an initial working version is produced. In the case 
of the rapid-prototyping model, this initial version is discarded, and the target product 
is then specifi ed and designed before being coded. In both the code-and-fi x and open-
source life-cycle models, the initial version is reworked until it becomes the target 
product. Accordingly, in an open-source project, there are generally no specifi cations 
or design. 
  Bearing in mind the great importance of having specifi cations and designs, how have 
some open-source projects been so successful? In the closed-source world, some software 
professionals are more skilled and some are less skilled (see Section 9.2). The challenge 
of producing open-source software has attracted some of the fi nest software experts. In 
other words, an open-source project can be successful, despite the lack of specifi cations or 
design, if the skills of the individuals who work on that project are so superb that they can 
function effectively without specifi cations or design. 
  The open-source life-cycle model is restricted in its applicability. On the one hand, 
the open-source model has been exceedingly successfully used for certain infrastruc-
ture software projects, such as operating systems (Linux, OpenBSD, Mach, Darwin), 
Web browsers (Firefox, Netscape), compilers (gcc), Web servers (Apache), or database 
management systems (MySQL). On the other hand, it is hard to conceive of open-source 
development of a software product to be used only in one commercial organization. A 
key to open-source software development is that the members of both the core group and 
the periphery are users of the software being developed. Consequently, the open-source 
life-cycle model is inapplicable unless the target product is viewed by a wide range of 
users as useful to them. 
  At the time of writing, there are about 350,000 open-source projects at SourceForge.
net and FreshMeat.net. About half them have never even attracted a team to work on the 
project. Of those where work has started, the overwhelming preponderance have never been 
completed and are unlikely to ever progress much further. But when the open-source model 
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has worked, it has sometimes been incredibly successful. The open-source products listed 
in parentheses in the previous paragraph are widely used; most of them are utilized on a 
regular basis by literally millions of users. 
  Explanations for the success of the open-source life-cycle model are presented in 
 Chapter 4  within the context of team organizational aspects of open-source software 
projects.  

  2.9.5 Agile Processes 
   Extreme programming   [Beck, 2000] is a somewhat controversial new approach to 
software development based on the iterative-and-incremental model. The fi rst step is 
that the software development team determines the various features (  stories  ) the client 
would like the product to support. For each such feature, the team informs the client 
how long it will take to implement that feature and how much it will cost. This fi rst step 
corresponds to the requirements and analysis workfl ows of the iterative-and-incremental 
model ( Figure 2.4 ). 
  The client selects the features to be included in each successive build using cost–
benefi t analysis (Section 5.2), that is, on the basis of the duration and the cost estimates 
provided by the development team as well as the potential benefi ts of the feature to 
his or her business. The proposed build is broken down into smaller pieces termed 
  tasks  . A programmer fi rst draws up test cases for a task; this is termed   test-driven 
development   (TDD). Two programmers work together on one computer (  pair 
programming  ) [Williams, Kessler, Cunningham, and Jeffries, 2000], implementing 
the task and ensuring that all the test cases work correctly. The two programmers alter-
nate typing every 15 or 20 minutes; the programmer who is not typing carefully checks 
the code while it is being entered by his or her partner. The task is then integrated into 
the current version of the product. Ideally, implementing and integrating a task should 
take no more than a few hours. In general, a number of pairs will implement tasks in 
parallel, so integration is essentially continuous. Team members change coding part-
ners daily, if possible; learning from the other team members increases everyone’s 
skill level. The TDD test cases used for the task are retained and utilized in all further 
integration testing. 
  Some drawbacks to pair programming have been observed in practice [Drobka, Noftz, 
and Raghu, 2004]. For example, pair programming requires large blocks of uninterrupted 
time, and software professionals can have diffi culty in fi nding 3- to 4-hour blocks of time. 
In addition, pair programming does not always work well with shy or overbearing individu-
als, or with two inexperienced programmers. 
  A number of features of extreme programming (XP) are somewhat different from the 
way in which software is usually developed:

   • The computers of the XP team are set up in the center of a large room lined with small 
cubicles.  

  • A client representative works with the XP team at all times.  
 •  No individual can work overtime for two successive weeks.  
  • There is no specialization. Instead, all members of the XP team work on requirements, 

analysis, design, code, and testing.  
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  • There is no overall design step before the various builds are constructed. Instead, the de-
sign is modifi ed while the product is being built. This procedure is termed   refactoring  . 
Whenever a test case will not run, the code is reorganized until the team is satisfi ed that 
the design is simple, straightforward, and runs all the test cases satisfactorily.    

  Two acronyms now associated with extreme programming are YAGNI (you aren’t gonna 
need it) and DTSTTCPW (do the simplest thing that could possibly work). In other words, 
a principle of extreme programming is to minimize the number of features; there is no need 
to build a product that does any more than what the client actually needs. 
  Extreme programming is one of a number of new paradigms that are collectively referred 
to as   agile processes  . Seventeen software developers (later dubbed the Agile Alliance) met 
at a Utah ski resort for two days in February 2001 and produced the   Manifesto for Agile Soft-
ware Development   [Beck et al., 2001]. Many of the participants had previously authored their 
own software development methodologies, including Extreme Programming [Beck, 2000], 
Crystal [Cockburn, 2001], and Scrum [Schwaber, 2001]. Consequently, the Agile Alliance 
did not prescribe a specifi c life-cycle model, but rather laid out a group of underlying prin-
ciples that were common to their individual approaches to software development. 
  Agile processes are characterized by considerably less emphasis on analysis and design 
than in almost all other modern life-cycle models. Implementation starts much earlier in 
the life cycle because working software is considered more important than detailed docu-
mentation. Responsiveness to changes in requirements is another major goal of agile pro-
cesses, and so is the importance of collaborating with the client. 
  One of the principles in the   Manifesto   is to deliver working software frequently, ideally every 
2 or 3 weeks. One way of achieving this is to use   timeboxing   [Jalote, Palit, Kurien, and Peeth-
amber, 2004], which has been used for many years as a time management technique. A specifi c 
amount of time is set aside for a task, and the team members then do the best job they can during 
that time. Within the context of agile processes, typically 3 weeks are set aside for each iteration. 
On the one hand, it gives the client confi dence to know that a new version with additional func-
tionality will arrive every 3 weeks. On the other hand, the developers know that they will have 
3 weeks (but no more) to deliver a new iteration without client interference of any kind; once 
the client has chosen the work for an iteration, it cannot be changed or increased. However, if it 
is impossible to complete the entire task in the timebox, the work may be reduced (“descoped”). 
In other words, agile processes demand fi xed time, not fi xed features. 
  Another common feature of agile processes is to have a short meeting at a regular time 
each day. All team members have to attend the meeting. Making all the participants stand 
in a circle, rather than sit around a table, helps to ensure that the meeting lasts no more than 
the stipulated 15 minutes. Each team member in turn answers fi ve questions:

  •  What have I done since yesterday’s meeting?  
 •  What am I working on today?  
 •  What problems are preventing me from achieving this?  
 •  What have we forgotten?  
  • What did I learn that I would like to share with the team?    

  The aim of the   stand-up meeting   is to raise problems, not solve them; solutions 
are found at follow-up meetings, preferably held directly after the stand-up meeting. 
Like timeboxing, stand-up meetings are a successful management technique now utilized 
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within the context of agile processes. Both timeboxed iterations and stand-up meetings are 
instances of two basic principles that underlie all agile methods: communication and satis-
fying the client’s needs as quickly as possible. 
  Agile processes have been successfully used on a number of small-scale projects. How-
ever, agile processes have not yet been used widely enough to determine whether this 
approach will fulfi ll its early promise. Furthermore, even if agile processes turn out to be 
good for small-scale software products, that does not necessarily mean that they can be 
used for medium- or large-scale software products, as will now be explained. 
  To appreciate why many software professionals have expressed doubts about agile pro-
cesses within the context of medium- and especially large-scale software products [Reifer, 
Maurer, and Erdogmus, 2003], consider the following analogy by Grady Booch [2000]. 
Anyone can successfully hammer together a few planks to build a doghouse, but it would 
be foolhardy to build a three-bedroom home without detailed plans. In addition, skills in 
plumbing, wiring, and roofi ng are needed to build a three-bedroom home, and inspections 
are essential. (That is, being able to build small-scale software products does not neces-
sarily mean that one has the skills for building medium-scale software products.) Further-
more, the fact that a skyscraper is the height of 1000 doghouses does not mean that one can 
build a skyscraper by piling 1000 doghouses on top of one another. In other words, building 
large-scale software products requires even more specialized and sophisticated skills than 
those needed to cobble together small-scale software products. 
  A key determinant in deciding whether agile processes are indeed a major breakthrough in 
software engineering will be the cost of future postdelivery maintenance (Section 1.3.2). That 
is, if the use of agile processes results in a reduction in the cost of postdelivery maintenance, 
XP and other agile processes will become widely adopted. On the other hand, refactoring is an 
intrinsic component of agile processes. As previously explained, the product is not designed as 
a whole; instead, the design is developed incrementally, and the code is reorganized whenever 
the current design is unsatisfactory for any reason. This refactoring then continues during 
postdelivery maintenance. If the design of a product when it passes its acceptance test is open-
ended and fl exible, then perfective maintenance should be easy to achieve at a low cost. How-
ever, if the design has to be refactored whenever additional functionality is added, then the cost 
of postdelivery maintenance of that product will be unacceptably high. As a consequence of 
the newness of the approach, there are still essentially no data on the maintenance of software 
developed using agile processes. However, preliminary maintenance data indicate that refac-
toring can consume a large percentage of the overall cost [Li and Alshayeb, 2002]. 
  Experiments have shown that certain features of agile processes can work well. For ex-
ample, Williams, Kessler, Cunningham, and Jeffries [2000] showed that pair programming 
leads to the development of higher-quality code in a shorter time, with greater job satisfac-
tion. However, an extensive experiment to evaluate pair programming within the context of 
software maintenance described in Section 4.6 [Arisholm, Gallis, Dybå, and Sjøberg, 2007] 
came to the same conclusion as an analysis of 15 published studies comparing the effective-
ness of individual and pair programming [Dybå et al., 2007]: It depends on both the program-
mer’s expertise and the complexity of the software product and the tasks to be solved. 
  The   Manifesto for Agile Software Development   essentially claims that agile processes are 
superior to more disciplined processes like the Unifi ed Process ( Chapter 3 ). Skeptics respond 
that proponents of agile processes are little more than hackers. However, there is a middle 
ground. The two approaches are not incompatible; it is possible to incorporate proven features 
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of agile processes within the framework of disciplined processes. This integration of the two 
approaches is described in books such as the one by Boehm and Turner [2003]. 
  In conclusion, agile processes appear to be a useful approach to building small-scale soft-
ware products when the client’s requirements are vague. In addition, some of the features of 
agile processes can be effectively utilized within the context of other life-cycle models.  

  2.9.6 Synchronize-and-Stabilize Life-Cycle Model 
 Microsoft, Inc., is the world’s largest manufacturer of COTS software. The majority of its 
packages are built using a version of the iterative-and-incremental model that has been termed 
the   synchronize-and-stabilize life-cycle model   [Cusumano and Selby, 1997]. 
  The requirements analysis phase is conducted by interviewing numerous potential clients 
for the package and extracting a list of features of highest priority to the clients. A specifi ca-
tion document is now drawn up. Next, the work is divided into three or four builds. The fi rst 
build consists of the most critical features, the second build consists of the next most critical 
features, and so on. Each build is carried out by a number of small teams working in parallel. 
At the end of each day, all the teams   synchronize  ; that is, they put the partially completed 
components together and test and debug the resulting product.   Stabilization   is performed at 
the end of each of the builds. Any remaining faults that have been detected so far are fi xed, and 
they now   freeze   the build; that is, no further changes will be made to the specifi cations. 
  The repeated synchronization step ensures that the various components always work 
together. Another advantage of this regular execution of the partially constructed product 
is that the developers obtain early insight into the operation of the product and can modify 
the requirements if necessary during the course of a build. The life-cycle model can be 
used even if the initial specifi cation is incomplete. The synchronize-and-stabilize model is 
considered further in Section 4.5, where team organizational details are discussed. 
  The spiral model has been left to last because it incorporates aspects of all the other 
models described in Section 2.9.  

  2.9.7 Spiral Life-Cycle Model 
 As stated in Section 2.5, an element of risk is always involved in the development of 
software. For example, key personnel can resign before the product has been adequately 
documented. The manufacturer of hardware on which the product is critically dependent 
can go bankrupt. Too much, or too little, can be invested in testing and quality assurance. 
After spending hundreds of thousands of dollars on developing a major software product, 
technological breakthroughs can render the entire product worthless. An organization may 
research and develop a database management system, but before the product can be mar-
keted, a lower-priced, functionally equivalent package is announced by a competitor. The 
components of a product may not fi t together when integration is performed. For obvious 
reasons, software developers try to minimize such risks wherever possible. 
  One way of minimizing certain types of risk is to construct a prototype. As described in 
Section 2.9.3, one approach to reducing the risk that the delivered product will not satisfy the 
client’s real needs is to construct a rapid prototype during the requirements phase. During 
subsequent phases, other sorts of prototypes may be appropriate. For example, a telephone 
company may devise a new, apparently highly effective algorithm for routing calls through 
a long-distance network. If the product is implemented but does not work as expected, the 
telephone company will have wasted the cost of developing the product. In addition, angry or 
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inconvenienced customers may take their business elsewhere. This outcome can be avoided 
by constructing a   proof-of-concept prototype   to handle only the routing of calls and 
testing it on a simulator. In this way, the actual system is not disturbed; and for the cost of 
implementing just the routing algorithm, the telephone company can determine whether it is 
worthwhile to develop an entire network controller incorporating the new algorithm. 
  A proof-of-concept prototype is not a rapid prototype constructed to be certain that the 
requirements have been accurately determined, as described in Section 2.9.3. Instead, it is more 
like an engineering prototype, that is, a scale model constructed to test the feasibility of construc-
tion. If the development team is concerned whether a particular part of the proposed software 
product can be constructed, a proof-of-concept prototype is constructed. For example, the de-
velopers may be concerned whether a particular computation can be performed quickly enough. 
In that case, they build a prototype to test the timing of just that computation. Or they may be 
worried that the font they intend to use for all screens will be too small for the average user to 
read without eyestrain. In this instance, they construct a prototype to display a number of differ-
ent screens and determine by experiment whether the users fi nd the font uncomfortably small. 
  The idea of minimizing risk via the use of prototypes and other means is the idea under-
lying the   spiral life-cycle model   [Boehm, 1988]. A simplifi ed way of looking at this life-
cycle model is as a waterfall model with each phase preceded by risk analysis, as shown in 
 Figure 2.12 . Before commencing each phase, an attempt is made to   mitigate   (control)   the 
risks  . If it is impossible to mitigate all the signifi cant risks at that stage, then the project is 
immediately terminated. 

 FIGURE 2.12    
 A simplifi ed 
version of the 
spiral life-cycle 
model. 
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  Prototypes can be used effectively to provide information about certain classes of risk. 
For example, timing constraints can generally be tested by constructing a prototype and 
measuring whether the prototype can achieve the necessary performance. If the prototype 
is an accurate functional representation of the relevant features of the product, then mea-
surements made on the prototype should give the developers a good idea as to whether the 
timing constraints can be achieved. 
  Other areas of risk are less amenable to prototyping, for example, the risk that the 
software personnel necessary to build the product cannot be hired or that key personnel 
may resign before the project is complete. Another potential risk is that a particular team 
may not be competent enough to develop a specifi c large-scale product. A successful 
contractor who builds single-family homes would probably not be able to build a high-
rise offi ce complex. In the same way, there are essential differences between small-scale 
and large-scale software, and prototyping is of little use. This risk cannot be mitigated 
by testing team performance on a much smaller prototype, in which team organizational 
issues specifi c to large-scale software cannot arise. Another area of risk for which pro-
totyping cannot be employed is evaluating the delivery promises of a hardware supplier. 
A strategy the developer can adopt is to determine how well previous clients of the sup-
plier have been treated, but past performance is by no means a certain predictor of future 
performance. A penalty clause in the delivery contract is one way of trying to ensure that 
essential hardware is delivered on time, but what if the supplier refuses to sign an agree-
ment that includes such a clause? Even with a penalty clause, late delivery may occur 
and eventually lead to legal action that can drag on for years. In the meantime, the soft-
ware developer may have gone bankrupt because nondelivery of the promised hardware 
caused nondelivery of the promised software. In short, whereas prototyping helps reduce 
risk in some areas, in other areas it is at best a partial answer, and in still others it is no 
answer at all. 
  The full spiral model is shown in  Figure 2.13 . The radial dimension represents cumula-
tive cost to date, and the angular dimension represents progress through the spiral. Each 
cycle of the spiral corresponds to a phase. A phase begins (in the top left quadrant) by 
determining objectives of that phase, alternatives for achieving those objectives, and con-
straints imposed on those alternatives. This process results in a strategy for achieving those 
objectives. Next, that strategy is analyzed from the viewpoint of risk. Attempts are made to 
mitigate every potential risk, in some cases by building a prototype. If certain risks cannot 
be mitigated, the project may be terminated immediately; under some circumstances, how-
ever, a decision could be made to continue the project but on a signifi cantly smaller scale. 
If all risks are successfully mitigated, the next development step is started (bottom right 
quadrant). This quadrant of the spiral model corresponds to the classical waterfall model. 
Finally, the results of that phase are evaluated and the next phase is planned. 
  The spiral model has been used successfully to develop a wide variety of products. In 
one set of 25 projects in which the spiral model was used in conjunction with other means 
of increasing productivity, the productivity of every project increased by at least 50 percent 
over previous productivity levels and by 100 percent in most of the projects [Boehm, 1988]. 
To be able to decide whether the spiral model should be used for a given project, the 
strengths and weaknesses of the spiral model are now assessed. 
  The spiral model has a number of strengths. The emphasis on alternatives and con-
straints supports the reuse of existing software (Section 8.1) and the incorporation of 

sch76183_ch02_035-073.indd   64sch76183_ch02_035-073.indd   64 04/06/10   12:34 PM04/06/10   12:34 PM



software quality as a specifi c objective. In addition, a common problem in software devel-
opment is determining when the products of a specifi c phase have been adequately tested. 
Spending too much time on testing is a waste of money, and delivery of the product may 
be unduly delayed. Conversely, if too little testing is performed, then the delivered software 
may contain residual faults, resulting in unpleasant consequences for the developers. The 
spiral model answers this question in terms of the risks that would be incurred by not doing 
enough testing or by doing too much testing. Perhaps most important, within the structure 
of the spiral model, postdelivery maintenance is simply another cycle of the spiral; there is 
essentially no distinction between postdelivery maintenance and development. Therefore, 
the problem that postdelivery maintenance is sometimes maligned by ignorant software 
professionals does not arise, because postdelivery maintenance is treated the same way as 
development. 

 FIGURE 2.13     Full spiral life-cycle model   [Boehm, 1988]. (© 1988 IEEE.) 
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  There are restrictions on the applicability of the spiral model. Specifi cally, in its present form, 
the model is intended exclusively for internal development of large-scale software [Boehm, 
1988]. Consider an internal project, that is, one where the developers and client are members 
of the same organization. If risk analysis leads to the conclusion that the project should be 
terminated, then in-house software personnel can simply be reassigned to a different project. 
However, once a contract has been signed between a development organization and an exter-
nal client, an attempt by either side to terminate that contract can lead to a breach-of-contract 
lawsuit. Therefore, in the case of contract software, all risk analysis must be performed by both 
client and developers before the contract is signed, not as in the spiral model. 
  A second restriction on the spiral model relates to the size of the project. Specifi cally, 
the spiral model is applicable to only large-scale software. It makes no sense to perform 
risk analysis if the cost of performing the risk analysis is comparable to the cost of the 
project as a whole, or if performing the risk analysis would signifi cantly affect the profi t 
potential. Instead, the developers should fi rst decide how much is at risk and then how 
much risk analysis, if any, to perform. 
  A major strength of the spiral model is that it is risk driven, but this can also be a weakness. 
Unless the software developers are skilled at pinpointing the possible risks and analyzing the 
risks accurately, there is a real danger that the team may believe that all is well at a time when 
the project, in fact, is headed for disaster. Only if the members of the development team are 
competent risk analysts should management decide to use the spiral model. 
  Overall, however, the major weakness of the spiral model, as well as the waterfall model 
and the rapid-prototyping model, is that it assumes that software is developed in discrete 
phases. In reality, however, software development is iterative and incremental, as refl ected in 
the evolution-tree model (Section 2.2) or the iterative-and-incremental model (Section 2.5).    

  2.10 Comparison of Life-Cycle Models 
  Nine different software life-cycle models have been examined with special attention paid to 
some of their strengths and weaknesses. The code-and-fi x model (Section 2.9.1) should be 
avoided. The waterfall model (Section 2.9.2) is a known quantity. Its strengths are understood, 
and so are its weaknesses. The rapid-prototyping model (Section 2.9.3) was developed as a 
reaction to a specifi c perceived weakness in the waterfall model, namely, that the delivered 
product may not be what the client really needs. However, there is still insuffi cient evidence 
that this approach is superior to the waterfall model in other respects. The open-source life-
cycle model has been incredibly successful in a small number of cases when used to con-
struct infrastructure software (Section 2.9.4). Agile processes (Section 2.9.5) are a set of 
controversial new approaches that, so far, appear to work, but for only small-scale software. 
The synchronize-and-stabilize model (Section 2.9.6) has been used with great success by 
Microsoft, but as yet there is no evidence of comparable success in other corporate cultures. 
Yet another alternative is to use the spiral model (Section 2.9.7), but only if the developers are 
adequately trained in risk analysis and risk resolution. The evolution-tree model (Section 2.2) 
and the iterative-and-incremental model (Section 2.5) are closest to the way that software is 
produced in the real world. An overall comparison appears in  Figure 2.14 . 
  Each software development organization should decide on a life-cycle model that is 
appropriate for that organization, its management, its employees, and its software process 
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and should vary the life-cycle model depending on the features of the specifi c product cur-
rently under development. Such a model incorporates appropriate aspects of the various 
life-cycle models, utilizing their strengths and minimizing their weaknesses.    

 FIGURE 2.14  
 Comparison 
of life-cycle 
models 
described in 
this chapter, 
including the 
section in which 
each is defi ned.          

   Life-Cycle Model     Strengths     Weaknesses   

     Evolution-tree model     Closely models real-world        
   (Section 2.2)      software production        

        Equivalent to the iterative-        
         and-incremental model        
   Iterative-and-incremental life-     Closely models real-world        
    cycle model (Section 2.5)      software production        
        Underlies the Unifi ed        
         Process        
   Code-and-fi x life-cycle model     Fine for short programs that     Totally unsatisfactory for   
    (Section 2.9.1)      require no maintenance      nontrivial programs   
   Waterfall life-cycle model     Disciplined approach     Delivered product may   
    (Section 2.9.2)     Document driven      not meet client’s needs   
   Rapid-prototyping life-cycle     Ensures that the delivered     Not yet proven beyond   
    model (Section 2.9.3)      product meets the client’s      all doubt   
         needs        
   Open-source life-cycle     Has worked extremely well in     Limited applicability   
    model (Section 2.9.4)      a small number of instances     Usually does not work   
   Agile processes (Section 2.9.5)     Work well when the client’s     Appear to work on only   
         requirements are vague      small-scale projects   
   Synchronize-and-stabilize life-     Future users’ needs are met     Has not been widely   
    cycle model (Section 2.9.6)     Ensures that components      used other than at   
         can be successfully integrated      Microsoft   
   Spiral life-cycle model     Risk driven     Can be used for only   
    (Section 2.9.7)           large-scale, in-house   
              products   
             Developers have to be   
              competent in risk analysis   
              and risk resolution      

   Chapter 
Review 
  There are signifi cant differences between the way that software is developed in theory (Section 2.1) and the 

way it is developed in practice. The Winburg mini case study is used to introduce the evolution-tree model 
(Section 2.2). Lessons of this mini case study, especially that requirements change, are presented in Sec-
tion 2.3. Change is discussed in greater detail in Section 2.4, where the moving-target problem is presented 
using the Teal Tractors mini case study. In Section 2.5, the importance of iteration and incrementation 
in real-world software engineering is stressed, and the iterative-and-incremental model is presented. The 
Winburg mini case study is then re-examined in Section 2.6 to illustrate the equivalence of the evolution-
tree model and the iterative-and-incremental model. In Section 2.7, the strengths of the iterative-and-
incremental model are presented, particularly that it enables us to resolve risks early. Management of the 
iterative-and-incremental model is discussed in Section 2.8. A number of different life-cycle models are 
now described, including the code-and-fi x life-cycle model (Section 2.9.1), waterfall life-cycle model 
(Section 2.9.2), rapid-prototyping life-cycle model (Section 2.9.3), open-source life-cycle model (Section 
2.9.4), agile processes (Section 2.9.5), synchronize-and-stabilize life-cycle model (Section 2.9.6), and spi-
ral life-cycle model (Section 2.9.7). In Section 2.10, these life-cycle models are compared and suggestions 
are made regarding the choice of a life-cycle model for a specifi c project.  
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  For 
Further 
Reading 

  The waterfall model was fi rst put forward in [Royce, 1970]. An analysis of the waterfall model is given 
in the fi rst chapter of [Royce, 1998]. 
  The synchronize-and-stabilize model is outlined in [Cusumano and Selby, 1997] and described 
in detail in [Cusumano and Selby, 1995]. The spiral model is explained in [Boehm, 1988], and its 
application to the TRW Software Productivity System appears in [Boehm et al., 1984]. 
  Extreme programming is described in [Beck, 2000]; refactoring is the subject of [Fowler et al., 
1999]. The   Manifesto for Agile Software Development   may be found at [Beck et al., 2001]. Books have 
been published on a variety of agile methods, including [Cockburn, 2001] and [Schwaber, 2001]. Agile 
methods are advocated in [Highsmith and Cockburn, 2001], [Boehm, 2002], [DeMarco and Boehm, 
2002], and [Boehm and Turner, 2003], whereas the case against agile methods is presented in [Stephens 
and Rosenberg, 2003]. Refactoring is surveyed in [Mens and Tourwe, 2004]. The use of XP in four 
mission-critical projects is described in [Drobka, Noftz, and Raghu, 2004]. Issues that can arise when 
introducing agile processes within an organization that currently is using traditional methodologies are 
discussed in [Nerur, Mahapatra, and Mangalaraj, 2005] and in [Boehm and Turner, 2005]. 
  A number of papers on extreme programming appear in the May–June 2003 issue of   IEEE Soft-
ware  , including [Murru, Deias, and Mugheddu, 2003] and [Rasmusson, 2003], both of which describe 
successful projects developed using extreme programming. The June 2003 issue of   IEEE Computer   
contains several articles on agile processes. The May–June 2005 issue of   IEEE Software   has four 
articles on agile processes, especially [Ceschi, Sillitti, Succi, and De Panfi lis, 2005] and [Karlström 
and Runeson, 2005]. The extent to which agile methods are used in the software industry is analyzed 
in [Hansson, Dittrich, Gustafsson, and Zarnak, 2006]. A survey of the critical success factors in agile 
software products is presented in [Chow and Cao, 2008]. Approaches to assist in the transition to 
agile methods are given in [Qumer and Henderson-Sellers, 2008]. Refactoring poses problems for 
software confi guration management tools; a solution is put forward in [Dig, Manzoor, Johnson, and 
Nguyen, 2008]. 
  Agile testing of a large-scale software product is described in [Talby, Keren, Hazzan, and Dubin-
sky, 2006]. The effectiveness of test-driven development is discussed in [Erdogmus, Morisio, and 
Torchiano, 2005]. The May–June 2007 issue of   IEEE Software   has a variety of articles on test-driven 
development, including [Martin, 2007]. 
  Risk analysis is described in [Ropponen and Lyttinen, 2000], [Longstaff, Chittister, Pethia, and 
Haimes, 2000], and [Scott and Vessey, 2002]. Managing risks in offshore software development is 
presented in [Sakthivel, 2007] and in [Iacovou and Nakatsu, 2008]. Risk management when software 
is developed using COTS components is described in [Li et al., 2008]. 
  A major iterative-and-incremental model is described in detail in [Jacobson, Booch, and Rumbaugh, 
1999]. However, many other iterative-and-incremental models have been put forward over the past 
30 years, as recounted in [Larman and Basili, 2003]. The use of an incremental model to build an air-
traffi c control system is discussed in [Goth, 2000]. An iterative approach to re-engineering legacy systems 
is given in [Bianchi, Caivano, Marengo, and Visaggio, 2003]. A tool for supporting incremental software 
development while ensuring that the artifacts evolve consistently is described in [Reiss, 2006]. 
  Many other life-cycle models have been put forward. For example, Rajlich and Bennett [2000] 
describe a maintenance-oriented life-cycle model. The July–August 2000 issue of   IEEE Software   has a 
variety of papers on software life-cycle models, including [Williams, Kessler, Cunningham, and Jeffries, 
2000] which describes an experiment on pair programming, one component of agile methods. 
  Rajlich [2006] goes further and suggests that many of the topics of this chapter have led us to a 
new paradigm for software engineering. 
  The proceedings of the International Software Process Workshops are a useful source of informa-
tion on life-cycle models. [ISO/IEC 12207, 1995] is a widely accepted standard for software life-
cycle processes.  
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  Problems      2.1  Represent the Winburg mini case study of Sections 2.2 and 2.3 using the waterfall model. Is this 
more or less effective than the evolution-tree model? Explain your answer.  

   2.2 Assume that the programmer in the Winburg mini case study had used single-precision numbers 
from the beginning. Draw the resulting evolution tree.  

   2.3  What is the connection between Miller’s Law and stepwise refi nement?  

   2.4  Does stepwise refi nement correspond to iteration or incrementation?  

   2.5  How are a workfl ow, an artifact, and a baseline related?  

   2.6  What is the connection between the waterfall model and the iterative-and-incremental model?  

   2.7  Suppose you have to build a product to determine the cube root of 9384.2034 to four decimal 
places. Once the product has been implemented and tested, it will be thrown away. Which 
life-cycle model would you use? Give reasons for your answer.  

   2.8 You are a software engineering consultant and have been called in by the vice-president for 
fi nance of a corporation that manufactures tires and sells them via its large chain of retail 
outlets. She wants your organization to build a product that will monitor the company’s stock, 
starting with the purchasing of the raw materials and keeping track of the tires as they are manu-
factured, distributed to the individual stores, and sold to customers. What criteria would you use 
in selecting a life-cycle model for the project?  

   2.9  List the risks involved in developing the software of Problem 2.8. How would you attempt to 
mitigate each risk?  

  2.10  Your development of the stock control product for the tire company is so successful that your 
organization decides that it must be reimplemented as a package to be sold to a variety of 
different organizations that manufacture and sell products via their own retailers. The new prod-
uct must therefore be portable and easily adapted to new hardware and/or operating systems. 
How would the criteria you use in selecting a life-cycle model for this project differ from those 
in your answer to Problem 2.8?  

  2.11  Describe the sort of product that would be an ideal application for open-source software 
development.  
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  2.12   Now describe the type of situation where open-source software development is inappropriate.  

  2.13   Describe the sort of product that would be an ideal application for an agile process.  

  2.14   Now describe the type of situation where an agile process is inappropriate.  

  2.15   Describe the sort of product that would be an ideal application for the spiral life-cycle model.  

  2.16   Now describe the type of situation where the spiral life-cycle model is inappropriate.  

  2.17   Describe a risk inherent in using the waterfall life-cycle model.  

  2.18   Describe a risk inherent in using the code-and-fi x life-cycle model.  

  2.19   Describe a risk inherent in using the open-source life-cycle model.  

  2.20   Describe a risk inherent in using agile processes.  

  2.21   Describe a risk inherent in using the spiral life-cycle model.  

  2.22   (Term Project) Which software life-cycle model would you use for the Chocoholics Anonymous 
product described in Appendix A? Give reasons for your answer.  

  2.23   (Readings in Software Engineering) Your instructor will distribute copies of [Rajlich, 2006]. Do 
you agree that software engineering has embarked on a new paradigm? Explain your answer.    
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 Chapter 3
The Software Process 
  Learning Objectives

 After studying this chapter, you should be able to 

    • Explain why two-dimensional life-cycle models are important.  

  • Describe the fi ve core workfl ows of the Unifi ed Process.  

  • List the artifacts tested in the test workfl ow.  

  • Describe the four phases of the Unifi ed Process.  

  • Explain the difference between the workfl ows and the phases of the Unifi ed 
Process.  

  • Appreciate the importance of software process improvement.  

  • Describe the capability maturity model (CMM).      

74

  The software process is the way we produce software. It incorporates the methodology 
(Section 1.11) with its underlying software life-cycle model ( Chapter 2 ) and techniques, 
the tools we use (Sections 5.6 through 5.12), and most important of all, the individuals 
building the software. 
  Different organizations have different software processes. For example, consider the 
issue of documentation. Some organizations consider the software they produce to be self-
documenting; that is, the product can be understood simply by reading the source code. 
Other organizations, however, are documentation intensive. They punctiliously draw up 
specifi cations and check them methodically. Then they perform design activities pains-
takingly, check and recheck their designs before coding commences, and give extensive 
descriptions of each code artifact to the programmers. Test cases are preplanned, the result 
of each test run is logged, and the test data are meticulously fi led away. Once the product 
has been delivered and installed on the client’s computer, any suggested change must be pro-
posed in writing, with detailed reasons for making the change. The proposed change can be 
made only with written authorization, and the modifi cation is not integrated into the product 
until the documentation has been updated and the changes to the documentation approved. 

sch76183_ch03_074-106.indd   74sch76183_ch03_074-106.indd   74 04/06/10   6:35 PM04/06/10   6:35 PM



Chapter 3  The Software Process  75

  Intensity of testing is another measure by which organizations can be compared. Some 
organizations devote up to half their software budgets to testing software, whereas others 
feel that only the user can thoroughly test a product. Consequently, some companies devote 
minimal time and effort to testing the product but spend a considerable amount of time 
fi xing problems reported by users. 
  Postdelivery maintenance is a major preoccupation of many software organizations. 
Software that is 10, 15, or even 20 years old is continually enhanced to meet changing 
needs; in addition, residual faults continue to appear, even after the software has been suc-
cessfully maintained for many years. Almost all organizations move their software to newer 
hardware every 3 to 5 years; this, too, constitutes postdelivery maintenance. 
  In contrast, yet other organizations essentially are concerned with research, leaving 
development—let alone maintenance—to others. This applies particularly to university 
computer science departments, where graduate students build software to prove that a par-
ticular design or technique is feasible. The commercial exploitation of the validated con-
cept is left to other organizations. (See Just in Case You Wanted to Know Box 3.1 regarding 
the wide variation in the ways different organizations develop software.) 
  However, regardless of the exact procedure, the software development process is 
structured around the fi ve workfl ows of  Figure 2.4 : requirements, analysis (specifi -
cation), design, implementation, and testing. In this chapter, these workfl ows are 
described, together with potential challenges that may arise during each workfl ow. 
Solutions to the challenges associated with the production of software usually are non-
trivial, and the rest of this book is devoted to describing suitable techniques. In the 
fi rst part of this chapter, only the challenges are highlighted, but the reader is guided 
to the relevant sections or chapters for solutions. Accordingly, this part of the chapter 
not only is an overview of the software process, but a guide to much of the rest of the 
book. The chapter concludes with national and international initiatives to improve the 
software process. 
  We now examine the Unifi ed Process. 

 Just in Case You Wanted to Know      Box 3.1 
 Why does the software process vary so drastically from organization to organization? A 
major reason is lack of software engineering skills. All too many software professionals 
simply do not keep up to date. They continue to develop software Ye Olde Fashioned 
Way, because they know no other way. 
  Another reason for differences in the software process is that many software managers 
are excellent managers but know precious little about software development or mainte-
nance. Their lack of technical knowledge can result in the project slipping so badly behind 
schedule that there is no point in continuing. This frequently is the reason why many 
software projects are never completed. 
  Yet another reason for differences among processes is management outlook. For 
example, one organization may decide that it is better to deliver a product on time, even if 
it is not adequately tested. Given the identical circumstances, a different organization might 
conclude that the risk of delivering that product without comprehensive testing would be 
far greater than taking the time to test the product thoroughly and consequently delivering 
it late. 
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  3.1 The Unifi ed Process 
  As stated at the beginning of this chapter, methodology is one component of a software 
process. The primary object-oriented methodology today is the   Unifi ed Process  . As 
explained in Just in Case You Wanted to Know Box 3.2, the Unifi ed “Process” is actually 
a methodology, but the name Unifi ed Methodology already had been used as the name 
of the fi rst version of the   Unifi ed Modeling Language   (UML). The three precursors of 
the Unifi ed Process (OMT, Booch’s method, and Objectory) are no longer supported, and 
the other object-oriented methodologies have had little or no following. As a result, the 
Unifi ed Process is usually the primary choice today for object-oriented software produc-
tion. Fortunately, as will be demonstrated in Part B of this book, the Unifi ed Process is an 
excellent object-oriented methodology in almost every way. 
  The Unifi ed Process is not a specifi c series of steps that, if followed, will result in the 
construction of a software product. In fact, no such single “one size fi ts all” methodology 
could exist because of the wide variety of types of software products. For example, there 
are many different application domains, such as insurance, aerospace, and manufacturing. 
Also, a methodology for rushing a COTS package to market ahead of its competitors is 
different from one used to construct a high-security electronic funds transfer network. In 
addition, the skills of software professionals can vary widely. 
  Instead, the Unifi ed Process should be viewed as an adaptable methodology. That is, it 
is modifi ed for the specifi c software product to be developed. As will be seen in Part B, 
some features of the Unifi ed Process are inapplicable to small- and even medium-scale 
software. However, much of the Unifi ed Process is used for software products of all sizes. 
The emphasis in this book is on this common subset of the Unifi ed Process, but aspects 
of the Unifi ed Process applicable to only large-scale software also are discussed, to ensure 
that the issues that need to be addressed when larger software products are constructed are 
thoroughly appreciated.   

  3.2  Iteration and Incrementation within 
the Object-Oriented Paradigm 

  The object-oriented paradigm uses modeling throughout. A   model   is a set of UML dia-
grams that represent one or more aspects of the software product to be developed. (UML 
diagrams are introduced in  Chapter 7 .) Recall that UML stands for Unifi ed   Modeling   Lan-
guage. That is, UML is the tool that we use to represent (model) the target software product. 
A major reason for using a graphical representation like UML is best expressed by the old 
proverb, a picture is worth a thousand words. UML diagrams enable software professionals 
to communicate with one another more quickly and more accurately than if only verbal 
descriptions were used. 
  The object-oriented paradigm is an iterative-and-incremental methodology. Each work-
fl ow consists of a number of steps, and to carry out that workfl ow, the steps of the workfl ow 
are repeatedly performed until the members of the development team are satisfi ed that 
they have an accurate UML model of the software product they want to develop. That is, 
even the most experienced software professionals iterate and reiterate until they are fi nally 
satisfi ed that the UML diagrams are correct. The implication is that software engineers, no 
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 Just in Case You Wanted to Know     Box 3.2 
 Until recently, the most popular object-oriented software development methodologies were 
object modeling technique (OMT) [Rumbaugh et al., 1991] and Grady Booch’s method 
[Booch, 1994]. OMT was developed by Jim Rumbaugh and his team at the General Elec-
tric Research and Development Center in Schenectady, New York, whereas Grady Booch 
developed his method at Rational, Inc., in Santa Clara, California. All object-oriented soft-
ware development methodologies essentially are equivalent, so the differences between 
OMT and Booch’s method are small. Nevertheless, there always was a friendly rivalry 
between the supporters of the two camps. 
  This changed in October 1994, when Rumbaugh joined Booch at Rational. The two 
methodologists immediately began to work together to develop a methodology that would 
combine OMT and Booch’s method. When a preliminary version of their work was pub-
lished, it was pointed out that they had not developed a methodology but merely a notation 
for representing an object-oriented software product. The name   Unifi ed Methodology   was 
quickly changed to   Unifi ed Modeling Language   (UML). In 1995, they were joined at Rational 
by Ivar Jacobson, author of the Objectory methodology. Booch, Jacobson, and Rumbaugh, 
affectionately called the “Three Amigos” (after the 1986 John Landis movie   Three Amigos!   
with Chevy Chase and Steve Martin), then worked together. Version 1.0 of UML, published 
in 1997, took the software engineering world by storm. Until then, there had been no 
universally accepted notation for the development of a software product. Almost overnight 
UML was used all over the world. The Object Management Group (OMG), an association of 
the world’s leading companies in object technology, took the responsibility for organizing 
an international standard for UML, so that every software professional would use the same 
version of UML, thereby promoting communication among individuals within an organi-
zation as well as companies worldwide. UML [Booch, Rumbaugh, and Jacobson, 1999] is 
today the unquestioned international standard notation for representing object-oriented 
software products. 
  An orchestral score shows which musical instruments are needed to play the piece, the 
notes each instrument is to play and when it is to play them, as well as a whole host of 
technical information such as the key signature, tempo, and loudness. Could this informa-
tion be given in English, rather than a diagram? Probably, but it would be impossible to play 
music from such a description. For example, there is no way a pianist and a violinist could 
perform a piece described as follows: “The music is in march time, in the key of B minor. The 
fi rst bar begins with the A above middle C on the violin (a quarter note). While this note is 
being played, the pianist plays a chord consisting of seven notes. The right hand plays the 
following four notes: E sharp above middle C . . .” 
  It is clear that, in some fi elds, a textual description simply cannot replace a diagram. 
Music is one such fi eld; software development is another. And for software development, 
the best modeling language available today is UML. 
  Taking the software engineering world by storm with UML was not enough for the Three 
Amigos. Their next endeavor was to publish a complete software development methodol-
ogy that unifi ed their three separate methodologies. This unifi ed methodology was fi rst 
called the   Rational Unifi ed Process   (RUP);   Rational   is in the name of the methodology not 
because the Three Amigos considered all other approaches to be irrational, but because at 
that time all three were senior managers at Rational, Inc. (Rational was bought by IBM in 
2003). In their book on RUP [Jacobson, Booch, and Rumbaugh, 1999], the name   Unifi ed 
Software Development Process   (USDP) was used. The term   Unifi ed Process   is generally used 
today, for brevity. 
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matter how outstanding they may be, almost never get the various work products right the 
fi rst time. How can this be? 
  The nature of software products is such that virtually everything has to be developed 
iteratively and incrementally. After all, software engineers are human, and therefore subject 
to Miller’s Law (Section 2.5). That is, it is impossible to consider everything at the same time, 
so just seven or so chunks (units of information) are handled initially. Then, when the next set 
of chunks is considered, more knowledge about the target software product is gained, and the 
UML diagrams are modifi ed in the light of this additional information. The process continues 
in this way until eventually the software engineers are satisfi ed that all the models for a given 
workfl ow are correct. In other words, initially the best possible UML diagrams are drawn in the 
light of the knowledge available at the beginning of the workfl ow. Then, as more knowledge 
about the real-world system being modeled is gained, the diagrams are made more accurate 
(iteration) and extended (incrementation). Accordingly, no matter how experienced and skillful 
a software engineer may be, he or she repeatedly iterates and increments until satisfi ed that the 
UML diagrams are an accurate representation of the software product to be developed. 
  Ideally, by the end of this book, the reader would have the software engineering skills 
necessary for constructing the large, complex software products for which the Unifi ed Pro-
cess was developed. Unfortunately, there are three reasons why this is not feasible. 

   1. Just as it is not possible to become an expert on calculus or a foreign language in one 
single course, gaining profi ciency in the Unifi ed Process requires extensive study and, 
more important, unending practice in object-oriented software engineering.  

  2. The Unifi ed Process was created primarily for use in developing large, complex soft-
ware products. To be able to handle the many intricacies of such software products, the 
Unifi ed Process is itself large. It would be hard to cover every aspect of the Unifi ed 
Process in a textbook of this size.  

  3. To teach the Unifi ed Process, it is necessary to present a case study that illustrates the 
features of the Unifi ed Process. To illustrate the features that apply to large software 
products, such a case study would have to be large. For example, just the specifi cations 
typically would take over 1000 pages.   

  For these three reasons, this book presents most, but not all, of the Unifi ed Process. 
  The fi ve   core workfl ows   of the Unifi ed Process (requirements workfl ow, analysis 
workfl ow, design workfl ow, implementation workfl ow, and test workfl ow) and their chal-
lenges are now discussed.   

  3.3 The Requirements Workfl ow 

  Software development is expensive. The development process usually begins when the 
client approaches a development organization with regard to a software product that, in 
the opinion of the client, is either essential to the profi tability of his or her enterprise or 
somehow can be justifi ed economically. The aim of the   requirements workfl ow   is for 
the development organization to determine the client’s needs. The fi rst task of the develop-
ment team is to acquire a basic understanding of the   application domain   (  domain   for 
short), that is, the specifi c environment in which the target software product is to operate. 
The domain could be banking, automobile manufacturing, or nuclear physics. 
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  At any stage of the process, if the client stops believing that the software will be cost 
effective, development will terminate immediately. Throughout this chapter the assumption 
is made that the client feels that the cost is justifi ed. Therefore, a vital aspect of software 
development is the   business case  , a document that demonstrates the cost-effectiveness of 
the target product. (In fact, the “cost” is not always purely fi nancial. For example, military 
software often is built for strategic or tactical reasons. Here, the cost of the software is the 
potential damage that could be suffered in the absence of the weapon being developed.) 
  At an initial meeting between client and developers, the client outlines the product as 
he or she conceptualizes it. From the viewpoint of the developers, the client’s description 
of the desired product may be vague, unreasonable, contradictory, or simply impossible 
to achieve. The task of the developers at this stage is to determine exactly what the client 
needs and to fi nd out from the client what constraints exist. 

  •  A major constraint is almost always the   deadline  . For example, the client may stipulate 
that the fi nished product must be completed within 14 months. In almost every application 
domain, it is now commonplace for a target software product to be mission critical. That 
is, the client needs the software product for core activities of his or her organization, and 
any delay in delivering the target product is detrimental to the organization.  

  • A variety of other constraints often are present, such as   reliability   (for example, the 
product must be operational 99 percent of the time, or the mean time between failures 
must be at least 4 months). Another common constraint is the size of the executable load 
image (for example, it has to run on the client’s personal computer or on the hardware 
inside the satellite).  

  • The   cost   is almost invariably an important constraint. However, the client rarely tells 
the developers how much money is available to build the product. Instead, a common 
practice is that, once the specifi cations have been fi nalized, the client asks the developers 
to name their price for completing the project. Clients follow this bidding procedure in 
the hope that the amount of the developers’ bid is lower than the amount the client has 
budgeted for the project.   

  The preliminary investigation of the client’s needs sometimes is called   concept explo-
ration  . In subsequent meetings between members of the development team and the client 
team, the functionality of the proposed product is successively refi ned and analyzed for 
technical feasibility and fi nancial justifi cation. 
  Up to now, everything seems to be straightforward. Unfortunately, the requirements 
workfl ow often is performed inadequately. When the product fi nally is delivered to the 
user, perhaps a year or two after the specifi cations have been signed off on by the client, the 
client may say to the developers, “I know that this is what I asked for, but it isn’t really what 
I wanted.” What the client asked for and, therefore, what the developers thought the client 
wanted, was not what the client actually   needed  . There can be a number of reasons for this 
predicament. First, the client may not truly understand what is going on in his or her own 
organization. For example, it is no use asking the software developers for a faster operating 
system if the cause of the current slow turnaround is a badly designed database. Or, if the 
client operates an unprofi table chain of retail stores, the client may ask for a fi nancial man-
agement information system that refl ects such items as sales, salaries, accounts payable, 
and accounts receivable. Such a product will be of little use if the real reason for the losses 
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is shrinkage (theft by employees and shoplifting). If that is the case, then a stock control 
system rather than a fi nancial management information system is required. 
  But the major reason why the client frequently asks for the wrong product is that soft-
ware is complex. If it is diffi cult for a software professional to visualize a piece of software 
and its functionality, the problem is far worse for a client who is barely computer literate. 
As will be shown in  Chapter 11 , the Unifi ed Process can help in this regard; the many UML 
diagrams of the Unifi ed Process assist the client in gaining the necessary detailed under-
standing of what needs to be developed.   

  3.4 The Analysis Workfl ow 
  The aim of the   analysis workfl ow   is to analyze and refi ne the requirements to achieve 
the detailed understanding of the requirements essential for developing a software product 
correctly and maintaining it easily. At fi rst sight, however, there is no need for an analysis 
workfl ow. Instead, an apparently simpler way to proceed would be to develop a software 
product by continuing with further iterations of the requirements workfl ow until the neces-
sary understanding of the target software product has been obtained. 
  The key point is that the output of the requirements workfl ow must be totally compre-
hended by the client. In other words, the artifacts of the requirements workfl ow must be 
expressed in the language of the client, that is, in a natural (human) language such as English, 
Armenian, or Zulu. But all natural languages, without exception, are somewhat imprecise and 
lend themselves to misunderstanding. For example, consider the following paragraph: 

  A part record and a plant record are read from the database. If it contains the letter A directly 
followed by the letter Q, then calculate the cost of transporting that part to that plant.  

  At fi rst sight, this requirement seems perfectly clear. But to what does   it   (the second 
word in the second sentence) refer: the part record, the plant record, or the database? 
  Ambiguities of this kind cannot arise if the requirements are expressed (say) in a math-
ematical notation. However, if a mathematical notation is used for the requirements, then 
the client is unlikely to understand much of the requirements. As a result, there may well be 
miscommunication between client and developers regarding the requirements, and conse-
quently, the software product developed to satisfy those requirements may not be what the 
client needs. 
  The solution is to have two separate workfl ows. The requirements workfl ow is couched 
in the language of the client; the analysis workfl ow, in a more precise language that ensures 
that the design and implementation workfl ows are correctly carried out. In addition, more 
details are added during the analysis workfl ow, details not relevant to the client’s under-
standing of the target software product but essential for the software professionals who will 
develop the software product. For example, the initial state of a statechart (Section 13.6) 
would surely not concern the client in any way but has to be included in the specifi cations 
if the developers are to build the target product correctly. 
  The specifi cations of the product constitute a contract. The software developers are 
deemed to have completed the contract when they deliver a product that satisfi es the 
acceptance criteria of the specifi cations. For this reason, the specifi cations should not 
include imprecise terms like   suitable, convenient, ample  , or   enough  , or similar terms that 
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sound exact but in practice are equally imprecise, such as   optimal   or   98 percent complete  . 
Whereas contract software development can lead to a lawsuit, there is no chance of the 
specifi cations forming the basis for legal action when the client and developers are from 
the same organization. Nevertheless, even in the case of internal software development, the 
specifi cations always should be written as if they will be used as evidence in a trial. 
  More important, the specifi cations are essential for both testing and maintenance. Unless 
the specifi cations are precise, there is no way to determine whether they are correct, let 
alone whether the implementation satisfi es the specifi cations. And it is hard to change the 
specifi cations unless some document states exactly what the specifi cations currently are. 
  When the Unifi ed Process is used, there is no specifi cation document in the usual sense of 
the term. Instead, a set of UML artifacts are shown to the client, as described in  Chapter 13 . 
These UML diagrams and their descriptions can obviate many (but by no means all) of the 
problems of the classical specifi cation document. 
  One mistake that can be made by a classical analysis team is that the specifi cations are 
ambiguous; as previously explained,   ambiguity   is intrinsic to natural languages.   Incom-
pleteness   is another problem in the specifi cations; that is, some relevant fact or require-
ment may be omitted. For instance, the specifi cation document may not state what actions 
are to be taken if the input data contain errors. Moreover, the specifi cation document may 
contain   contradictions  . For example, one place in the specifi cation document for a prod-
uct that controls a fermentation process states that if the pressure exceeds 35 psi, then 
valve M17 immediately must be shut. However, another place states that, if the pressure 
exceeds 35 psi, then the operator immediately must be alerted; only if the operator takes 
no remedial action within 30 seconds should valve M17 be shut automatically. Software 
development cannot proceed until such problems in the specifi cations have been corrected. 
As pointed out in the previous paragraph, many of these problems can be reduced by using 
the Unifi ed Process. This is because UML diagrams together with descriptions of those 
diagrams are less likely to contain ambiguity, incompleteness, and contradictions. 
  Once the client has approved the specifi cations, detailed planning and estimating com-
mences. No client authorizes a software project without knowing in advance how long the 
project will take and how much it will cost. From the viewpoint of the developers, these 
two items are just as important. If the developers underestimate the cost of a project, then 
the client pays the agreed-upon fee, which may be signifi cantly less than the develop-
ers’ actual cost. Conversely, if the developers overestimate what the project costs, then the 
client may turn down the project or have the job done by other developers whose estimate 
is more reasonable. Similar issues arise with regard to duration estimates. If the developers 
underestimate how long completing a project will take, then the resulting late delivery of 
the product, at best, results in a loss of confi dence by the client. At worst, lateness penalty 
clauses in the contract are invoked, causing the developers to suffer fi nancially. Again, if 
the developers overestimate how long it will take for the product to be delivered, the client 
may well award the job to developers who promise faster delivery. 
  For the developers, merely estimating the duration and total cost is not enough. 
The developers need to assign the appropriate personnel to the various workfl ows of the 
development process. For example, the implementation team cannot start until the relevant 
design artifacts have been approved by the software quality assurance (SQA) group, and 
the design team is not needed until the analysis team has completed its task. In other words, 
the developers have to plan ahead. A software project management plan (SPMP) must be 
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drawn up that refl ects the separate workfl ows of the development process and shows which 
members of the development organization are involved in each task, as well as the deadlines 
for completing each task. 
  The earliest that such a detailed plan can be drawn up is when the specifi cations have 
been fi nalized. Before that time, the project is too amorphous for complete planning. Some 
aspects of the project certainly must be planned right from the start, but until the developers 
know exactly what is to be built, they cannot specify all aspects of the plan for building it. 
  Therefore, once the specifi cations have been approved by the client, preparation of the 
software project management plan commences. Major components of the plan are the 
  deliverables   (what the client is going to get), the   milestones   (when the client gets them), 
and the   budget   (how much it is going to cost). 
  The plan describes the software process in fullest detail. It includes aspects such as the 
life-cycle model to be used, the organizational structure of the development organization, 
project responsibilities, managerial objectives and priorities, the techniques and CASE 
tools to be used, and detailed schedules, budgets, and resource allocations. Underlying the 
entire plan are the duration and cost estimates; techniques for obtaining such estimates are 
described in Section 9.2. 
  The analysis workfl ow is described in  Chapters 12  and  13 : classical analysis techniques 
are described in  Chapter 12 , and object-oriented analysis is the subject of  Chapter 13 . 
A major artifact of the analysis workfl ow is the software project management plan. An 
explanation of how to draw up the SPMP is given in Sections 9.3 though 9.5. 
  Now the design workfl ow is examined.   

  3.5 The Design Workfl ow 
  The specifi cations of a product spell out   what   the product is to do; the design shows   how   
the product is to do it. More precisely, the aim of the   design workfl ow   is to refi ne the 
artifacts of the analysis workfl ow until the material is in a form that can be implemented 
by the programmers. 
  As explained in Section 1.3, during the classical design phase, the design team determines 
the internal structure of the product. The designers decompose the product into   modules  , 
independent pieces of code with well-defi ned interfaces to the rest of the product. The 
interface of each module (that is, the arguments passed to the module and the arguments 
returned by the module) must be specifi ed in detail. For example, a module might measure 
the water level in a nuclear reactor and cause an alarm to sound if the level is too low. A 
module in an avionics product might take as input two or more sets of coordinates of an 
incoming enemy missile, compute its trajectory, and invoke another module to advise the 
pilot as to possible evasive action. Once the team has completed the decomposition into 
modules (the   architectural design  ), the   detailed design   is performed. For each mod-
ule, algorithms are selected and data structures chosen. 
  Turning now to the object-oriented paradigm, the basis of that paradigm is the   class  , a 
specifi c type of module. Classes are extracted during the analysis workfl ow and designed 
during the design workfl ow. Consequently, the object-oriented counterpart of architectural 
design is performed as a part of the object-oriented analysis workfl ow, and the object-
oriented counterpart of detailed design is part of the object-oriented design workfl ow. 
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  The design team must keep a meticulous record of the design decisions that are made. 
This information is essential for two reasons. 

   1. While the product is being designed, a dead end will be reached at times and the design 
team must backtrack and redesign certain pieces. Having a written record of why specifi c 
decisions were made assists the team when this occurs and helps it get back on track.  

  2. Ideally, the design of the product should be open-ended, meaning future enhancements 
(postdelivery maintenance) can be done by adding new classes or replacing existing 
classes without affecting the design as a whole. Of course, in practice, this ideal is dif-
fi cult to achieve. Deadline constraints in the real world are such that designers struggle 
against the clock to complete a design that satisfi es the original specifi cations, without 
worrying about any later enhancements. If future enhancements (to be added after the 
product is delivered to the client) are included in the specifi cations, then these must be 
allowed for in the design, but this situation is extremely rare. In general, the specifi ca-
tions, and hence the design, deal with only present requirements. In addition, while 
the product is still being designed, there is no way to determine all possible future 
enhancements. Finally, if the design has to take   all   future possibilities into account, 
at best it will be unwieldy; at worst, it will be so complicated that implementation is 
impossible. So the designers have to compromise, putting together a design that can be 
extended in many reasonable ways without the need for total redesign. But, in a product 
that undergoes major enhancement, the time will come when the design simply cannot 
handle further changes. When this stage is reached, the product must be redesigned as 
a whole. The task of the redesign team is considerably easier if the team members are 
provided a record of the reasons for all the original design decisions.     

  3.6 The Implementation Workfl ow 
  The aim of the   implementation workfl ow   is to implement the target software product 
in the chosen implementation language(s). A small software product is sometimes imple-
mented by the designer. In contrast, a large software product is partitioned into smaller sub-
systems, which are then implemented in parallel by coding teams. The subsystems, in turn, 
consist of   components   or   code artifacts   implemented by an individual programmer. 
  Usually, the only documentation given a programmer is the relevant design artifact. For 
example, in the case of the classical paradigm, the programmer is given the detailed design 
of the module he or she is to implement. The detailed design usually provides enough 
information for the programmer to implement the code artifact without too much diffi culty. 
If there are any problems, they can quickly be cleared up by consulting the responsible 
designer. However, there is no way for the individual programmer to know if the architec-
tural design is correct. Only when integration of individual code artifacts commences do 
the shortcomings of the design as a whole start coming to light. 
  Suppose that a number of code artifacts have been implemented and integrated and the 
parts of the product integrated so far appear to be working correctly. Suppose further that 
a programmer has correctly implemented artifact a45, but when this artifact is integrated 
with the other existing artifacts, the product fails. The cause of the failure lies not in artifact 
a45 itself, but rather in the way that artifact a45 interacts with the rest of the product, as 
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specifi ed in the architectural design. Nevertheless, in this type of situation the program-
mer who just coded artifact a45 tends to be blamed for the failure. This is unfortunate, 
because the programmer has simply followed the instructions provided by the designer and 
implemented the artifact exactly as described in the detailed design for that artifact. The 
members of the programming team are rarely shown the “big picture,” that is, the archi-
tectural design, let alone asked to comment on it. Although it is grossly unfair to expect an 
individual programmer to be aware of the implications of a specifi c artifact for the product 
as a whole, this unfortunately happens in practice all too often. This is yet another reason 
why it is so important for the design to be correct in every respect. 
  The correctness of the design (as well as the other artifacts) is checked as part of the test 
workfl ow.   

  3.7 The Test Workfl ow 
  As shown in  Figure 2.4 , in the Unifi ed Process, testing is carried out in parallel with the 
other workfl ows, starting from the beginning. There are two major aspects to testing. 

   1. Every developer and maintainer is personally responsible for ensuring that his or her 
work is correct. Therefore, a software professional has to test and retest each artifact he 
or she develops or maintains.  

  2. Once the software professional is convinced that an artifact is correct, it is handed over to 
the software quality assurance group for independent testing, as described in  Chapter 6 .   

  The nature of the   test workfl ow   changes depending on the artifacts being tested. How-
ever, a feature important to all artifacts is traceability. 

  3.7.1 Requirements Artifacts 
 If the requirements artifacts are to be testable over the life cycle of the software product, 
then one property they must have is   traceability  . For example, it must be possible to trace 
every item in the analysis artifacts back to a requirements artifact and similarly for the 
design artifacts and the implementation artifacts. If the requirements have been presented 
methodically, properly numbered, cross-referenced, and indexed, then the developers 
should have little diffi culty tracing through the subsequent artifacts and ensuring that they 
are indeed a true refl ection of the client’s requirements. When the work of the members of 
the requirements team is subsequently checked by the SQA group, traceability simplifi es 
their task, too.  

  3.7.2 Analysis Artifacts 
 As pointed out in  Chapter 1 , a major source of faults in delivered software is faults in the 
specifi cations that are not detected until the software has been installed on the client’s 
computer and used by the client’s organization for its intended purpose. Both the analy-
sis team and the SQA group must therefore check the analysis artifacts assiduously. In 
addition, they must ensure that the specifi cations are feasible, for example, that a specifi c 
hardware component is fast enough or that the client’s current online disk storage capacity 
is adequate to handle the new product. An excellent way of checking the analysis artifacts 
is by means of a review. Representatives of the analysis team and of the client are present. 
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The meeting usually is chaired by a member of the SQA group. The aim of the review is to 
determine whether the analysis artifacts are correct. The reviewers go through the analysis 
artifacts, checking to see if there are any faults. Walkthroughs and inspections are two types 
of reviews, and they are described in Section 6.2. 
  We turn now to the checking of the detailed planning and estimating that takes place 
once the client has signed off on the specifi cations. Whereas it is essential that every aspect 
of the SPMP be meticulously checked by the development team and then by the SQA 
group, particular attention must be paid to the plan’s duration and cost estimates. One way 
to do this is for management to obtain two (or more) independent estimates of both dura-
tion and cost when detailed planning starts, and then reconcile any signifi cant differences. 
With regard to the SPMP document, an excellent way to check it is by a review similar to 
the review of the analysis artifacts. If the duration and cost estimates are satisfactory, the 
client will give permission for the project to proceed.  

  3.7.3 Design Artifacts 
 As mentioned in Section 3.7.1, a critical aspect of testability is traceability. In the case of 
the design, this means that every part of the design can be linked to an analysis artifact. A 
suitably cross-referenced design gives the developers and the SQA group a powerful tool 
for checking whether the design agrees with the specifi cations and whether every part of 
the specifi cations is refl ected in some part of the design. 
  Design reviews are similar to the reviews that the specifi cations undergo. However, in 
view of the technical nature of most designs, the client usually is not present. Members of 
the design team and the SQA group work through the design as a whole as well as through 
each separate design artifact, ensuring that the design is correct. The types of faults to look 
for include logic faults, interface faults, lack of exception handling (processing of error 
conditions), and most important, nonconformance to the specifi cations. In addition, the 
review team always should be aware of the possibility that some analysis faults were not 
detected during the previous workfl ow. A detailed description of the review process is given 
in Section 6.2.  

  3.7.4 Implementation Artifacts 
 Each component should be tested while it is being implemented (desk checking); and after 
it has been implemented, it is run against test cases. This informal testing is done by the pro-
grammer. Thereafter, the quality assurance group tests the component methodically; this is 
termed   unit testing  . A variety of unit-testing techniques are described in  Chapter 15 . 
  In addition to running test cases, a code review is a powerful, successful technique for 
detecting programming faults. Here, the programmer guides the members of the review 
team through the listing of the component. The review team must include an SQA repre-
sentative. The procedure is similar to reviews of specifi cations and designs described previ-
ously. As in all the other workfl ows, a record of the activities of the SQA group are kept as 
part of the test workfl ow. 
  Once a component has been coded, it must be combined with the other coded components 
so that the SQA group can determine whether the (partial) product as a whole functions 
correctly. The way in which the components are integrated (all at once or one at a time) and 
the specifi c order (from top to bottom or from bottom to top in the component interconnec-
tion diagram or class hierarchy) can have a critical infl uence on the quality of the resulting 
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product. For example, suppose the product is integrated bottom up. A major design fault, if 
present, will show up late, necessitating an expensive reimplementation. Conversely, if the 
components are integrated top down, then the lower-level components usually do not receive 
as thorough a testing as would be the case if the product were integrated bottom up. These and 
other problems are discussed in detail in  Chapter 15 . A detailed explanation is given there as 
to why coding and integration must be performed in parallel. 
  The purpose of this   integration testing   is to check that the components combine 
correctly to achieve a product that satisfi es its specifi cations. During integration testing, 
particular care must be paid to testing the component interfaces. It is important that the 
number, order, and types of formal arguments match the number, order, and types of actual 
arguments. This strong type checking [van Wijngaarden et al., 1975] is best performed by 
the compiler and linker. However, many languages are not strongly typed. When such a 
language is used, members of the SQA group must check the interfaces. 
  When the integration testing has been completed (that is, when all the components have 
been coded and integrated), the SQA group performs   product testing  . The functionality 
of the product as a whole is checked against the specifi cations. In particular, the constraints 
listed in the specifi cations must be tested. A typical example is whether the response time 
has been met. Because the aim of product testing is to determine whether the specifi cations 
have been correctly implemented, many of the test cases can be drawn up once the specifi -
cations are complete. 
  Not only must the correctness of the product be tested but its robustness must also be 
tested. That is, intentionally erroneous input data are submitted to determine whether the 
product will crash or whether its error-handling capabilities are adequate for dealing with 
bad data. If the product is to be run together with the client’s currently installed software, 
then tests also must be performed to check that the new product will have no adverse effect 
on the client’s existing computer operations. Finally, a check must be made as to whether 
the source code and all other types of documentation are complete and internally consistent. 
Product testing is discussed in Section 15.21. On the basis of the results of the product test, 
a senior manager in the development organization decides whether the product is ready to 
be released to the client. 
  The fi nal step in testing the implementation artifacts is   acceptance testing  . The soft-
ware is delivered to the client, who tests it on the actual hardware, using actual data as 
opposed to test data. No matter how methodical the development team or the SQA group 
might be, there is a signifi cant difference between test cases, which by their very nature are 
artifi cial, and actual data. A software product cannot be considered to satisfy its specifi ca-
tions until the product has passed its acceptance test. More details about acceptance testing 
are given in Section 15.22. 
  In the case of COTS software (Section 1.11), as soon as product testing is complete, 
versions of the complete product are supplied to selected possible future clients for testing 
on site. The fi rst such version is termed the   alpha release  . The corrected alpha release 
is called the   beta release  ; in general, the beta release is intended to be close to the fi nal 
version. (The terms alpha release and beta release are generally applied to all types of 
software products, not just COTS.) 
  Faults in COTS software usually result in poor sales of the product and huge losses for the 
development company. So that as many faults as possible come to light as early as possible, 
developers of COTS software frequently give alpha or beta releases to selected companies, in 
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the expectation that on-site tests will uncover any latent faults. In return, the alpha and beta 
sites frequently are promised free copies of the delivered version of the software. Risks are 
involved for a company participating in alpha or beta testing. In particular, alpha releases 
can be fault laden, resulting in frustration, wasted time, and possible damage to databases. 
However, the company gets a head start in using the new COTS software, which can give it 
an advantage over its competitors. A problem occurs sometimes when software organizations 
use alpha testing by potential clients in place of thorough product testing by the SQA group. 
Although alpha testing at a number of different sites usually brings to light a large variety of 
faults, there is no substitute for the methodical testing that the SQA group can provide.    

  3.8 Postdelivery Maintenance 
  Postdelivery maintenance is not an activity grudgingly carried out after the product has been 
delivered and installed on the client’s computer. On the contrary, it is an integral part of the 
software process that must be planned for from the beginning. As explained in Section 3.5, 
the design, as far as is feasible, should take future enhancements into account. Coding must be 
performed with future maintenance kept in mind. After all, as pointed out in Section 1.3, more 
money is spent on postdelivery maintenance than on all other software activities combined. 
It therefore is a vital aspect of software production. Postdelivery maintenance must never be 
treated as an afterthought. Instead, the entire software development effort must be carried out in 
such a way as to minimize the impact of the inevitable future postdelivery maintenance. 
  A common problem with postdelivery maintenance is documentation or, rather, lack of it. 
In the course of developing software against a time deadline, the original analysis and design 
artifacts frequently are not updated and, consequently, are almost useless to the maintenance 
team. Other documentation such as the database manual or the operating manual may never 
be written, because management decided that delivering the product to the client on time was 
more important than developing the documentation in parallel with the software. In many 
instances, the source code is the only documentation available to the maintainer. The high rate 
of personnel turnover in the software industry exacerbates the maintenance situation, in that 
none of the original developers may be working for the organization at the time when main-
tenance is performed. Postdelivery maintenance frequently is the most challenging aspect of 
software production for these reasons and the additional reasons given in  Chapter 16 . 
  Turning now to testing, there are two aspects to testing changes made to a product when 
postdelivery maintenance is performed. The fi rst is checking that the required changes have 
been implemented correctly. The second aspect is ensuring that, in the course of making 
the required changes to the product, no other inadvertent changes were made. Therefore, 
once the programmer has determined that the desired changes have been implemented, the 
product must be tested against previous test cases to make certain that the functionality 
of the rest of the product has not been compromised. This procedure is called   regres-
sion testing  . To assist in regression testing, it is necessary that all previous test cases be 
retained, together with the results of running those test cases. Testing during postdelivery 
maintenance is discussed in greater detail in  Chapter 16 . 
  A major aspect of postdelivery maintenance is a record of all the changes made, together 
with the reason for each change. When software is changed, it has to be regression tested. 
Therefore, the regression test cases are a central form of documentation.   
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  3.9 Retirement 
  The fi nal stage in the software life cycle is   retirement  . After many years of service, a stage 
is reached when further postdelivery maintenance no longer is cost effective. 

   • Sometimes the proposed changes are so drastic that the design as a whole would have 
to be changed. In such a case, it is less expensive to redesign and recode the entire 
product.  

  • So many changes may have been made to the original design that interdependencies 
inadvertently have been built into the product, and even a small change to one minor 
component might have a drastic effect on the functionality of the product as a whole.  

  • The documentation may not have been adequately maintained, thereby increasing the 
risk of a regression fault to the extent that it would be safer to recode than maintain.  

  • The hardware (and operating system) on which the product runs is to be replaced; it may 
be more economical to reimplement from scratch than to modify.   

  In each of these instances the current version is replaced by a new version, and the soft-
ware process continues. 
  True retirement, on the other hand, is a somewhat rare event that occurs when a product 
has outgrown its usefulness. The client organization no longer requires the functionality 
provided by the product, and it fi nally is removed from the computer.   

  3.10 The Phases of the Unifi ed Process 
   Figure 3.1  differs from  Figure 2.4  in that the labels of the increments have been changed. 
Instead of Increment A, Increment B, and so on, the four increments are now labeled 
Inception phase, Elaboration phase, Construction phase, and Transition phase. In 
other words, the phases of the Unifi ed Process correspond to increments. 

 FIGURE 3.1     
The core 
workfl ows and 
the phases of 
the Unifi ed 
Process. 
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  Although in theory the development of a software product could be performed in any 
number of increments, development in practice often seems to consist of four increments. 
The increments or phases are described in Sections 3.10.1 through 3.10.4, together with the 
deliverables of each phase, that is, the artifacts that should be completed by the end of that 
phase. 
  Every step performed in the Unifi ed Process falls into one of fi ve core workfl ows and 
  also   into one of four phases, the inception phase, elaboration phase, construction phase, 
and transition phase. The various steps of these four phases are already described in Sec-
tions 3.3 through 3.7. For example, building a business case is part of the requirements 
workfl ow (Section 3.3). It is also part of the inception phase. Nevertheless, each step has to 
be considered twice, as will be explained. 
  Consider the requirements workfl ow. To determine the client’s needs, one of the steps 
is, as just stated, to build a business case. In other words, within the framework of the 
requirements workfl ow, building a business case is presented within a   technical   context. In 
Section 3.10.1, a description is presented of building a business case within the framework 
of the inception phase, the phase in which management decides whether or not to develop 
the proposed software product. That is, building a business case shortly is presented within 
an   economic   context (Section 1.2). 
  At the same time, there is no point in presenting each step twice, both times at the same 
level of detail. Accordingly, the inception phase is described in depth to highlight the dif-
ference between the technical context of the workfl ows and the economic context of the 
phases, but the other three phases are simply outlined. 

  3.10.1 The Inception Phase 
 The aim of the   inception phase   (fi rst increment) is to determine whether it is worthwhile 
to develop the target software product. In other words, the primary aim of this phase is to 
determine whether the proposed software product is economically viable. 
  Two steps of the requirements workfl ow are to understand the domain and build a 
business model. Clearly, there is no way the developers can give any kind of opinion 
regarding a possible future software product unless they fi rst understand the domain in 
which they are considering developing the target software product. It does not matter if 
the domain is a television network, a machine tool company, or a hospital specializing in 
liver disease—if the developers do not fully understand the domain, little reliance can be 
placed on what they subsequently build. Hence, the fi rst step is to obtain domain knowl-
edge. Once the developers have a full comprehension of the domain, the second step is 
to build a business model, that is, a description of the client’s business processes. In 
other words, the fi rst need is to understand the domain itself, and the second need is to 
understand precisely how the client organization operates in that domain. 
  Now the scope of the target project has to be delimited. For example, consider a pro-
posed software product for a new highly secure ATM network for a nationwide chain 
of banks. The size of the business model of the banking chain as a whole is likely to be 
huge. To determine what the target software product should incorporate, the developers 
have to focus on only a subset of the business model, namely, the subset covered by the 
proposed software product. Therefore, delimiting the scope of the proposed project is the 
third step. 
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  Now the developers can begin to make the initial business case. The questions that 
need to be answered before proceeding with the project include [Jacobson, Booch, and 
Rumbaugh, 1999]: 

   • Is the proposed software product cost effective? That is, will the benefi ts to be gained 
as a consequence of developing the software product outweigh the costs involved? How 
long will it take to obtain a return on the investment needed to develop the proposed 
software product? Alternatively, what will be the cost to the client if he or she decides 
not to develop the proposed software product? If the software product is to be sold in the 
marketplace, have the necessary marketing studies been performed?  

  • Can the proposed software product be delivered in time? That is, if the software product 
is delivered late to the market, will the organization still make a profi t or will a competi-
tive software product obtain the lion’s share of the market? Alternatively, if the software 
product is to be developed to support the client organization’s own activities (presum-
ably including mission-critical activities), what is the impact if the proposed software 
product is delivered late?  

 •  What risks are involved in developing the software product, and how can these risks 
be mitigated? Do the team members who will develop the proposed software product 
have the necessary experience? Is new hardware needed for this software product 
and, if so, is there a risk that it will not be delivered in time? If so, is there a way 
to mitigate that risk, perhaps by ordering backup hardware from another supplier? 
Are software tools ( Chapter 5 ) needed? Are they currently available? Do they have 
all the necessary functionality? Is it likely that a COTS package (Section 1.11) 
with all (or almost all) the functionality of the proposed custom software prod-
uct will be put on the market while the project is under way, and how can this be 
determined?   

  By the end of the inception phase the developers need answers to these questions so that 
the initial business case can be made. 
  The next step is to identify the risks. There are three major risk categories: 

   1.   Technical risks  . Examples of technical risks were just listed.  
  2.   Not getting the requirements right  . This risk can be mitigated by performing the require-

ments workfl ow correctly.  
  3.   Not getting the architecture right  . The architecture may not be suffi ciently robust. 

(Recall from Section 2.7 that the architecture of a software product consists of the vari-
ous components and how they fi t together, and that the property of being able to handle 
extensions and changes without falling apart is its robustness.) In other words, while the 
software product is being developed, there is a risk that trying to add the next piece to 
what has been developed so far might require the entire architecture to be redesigned 
from scratch. An analogy would be to build a house of cards, only to fi nd the entire 
edifi ce tumbling down when an additional card is added.   

  The risks need to be ranked so that the critical risks are mitigated fi rst. 
  As shown in  Figure 3.1 , a small amount of the analysis workfl ow is performed during 
the inception phase. All that is usually done is to extract the information needed for the 
design of the architecture. This design work is also refl ected in  Figure 3.1 . 
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  Turning now to the implementation workfl ow, during the inception phase frequently 
no coding is performed. However, on occasion, it is necessary to build a proof-of-concept 
prototype to test the feasibility of part of the proposed software product, as described in 
Section 2.9.7. 
  The test workfl ow commences at the start of the inception phase. The major aim here is 
to ensure that the requirements are accurately determined. 
  Planning is an essential part of every phase. In the case of the inception phase, the developers 
have insuffi cient information at the beginning of the phase to plan the entire development, so the 
only planning done at the start of the project is the planning for the inception phase itself. For 
the same reason, a lack of information, the only planning that can meaningfully be done at the 
end of the inception phase is to plan for just the next phase, the elaboration phase. 
  Documentation, too, is an essential part of every phase. The deliverables of the inception 
phase include [Jacobson, Booch, and Rumbaugh, 1999] 

  •  The initial version of the domain model.  
  • The initial version of the business model.  
  • The initial version of the requirements artifacts.  
  • A preliminary version of the analysis artifacts.  
  • A preliminary version of the architecture.  
  • The initial list of risks.  
  • The initial use cases (see  Chapter 11 ).  
  • The plan for the elaboration phase.  
  • The initial version of the business case.   

  Obtaining the last item, the initial version of the business case, is the overall aim of the 
inception phase. This initial version incorporates a description of the scope of the software 
product as well as fi nancial details. If the proposed software product is to be marketed, the 
business case includes revenue projections, market estimates, and initial cost estimates. 
If the software product is to be used in-house, the business case includes the initial cost–
benefi t analysis (Section 5.2).  

  3.10.2 The Elaboration Phase 
 The aim of the   elaboration phase   (second increment) is to refi ne the initial require-
ments, refi ne the architecture, monitor the risks and refi ne their priorities, refi ne the busi-
ness case, and produce the software project management plan. The reason for the name 
  elaboration phase   is clear; the major activities of this phase are refi nements or elaborations 
of the previous phase. 
   Figure 3.1  shows that these tasks correspond to all but completing the requirements 
workfl ow ( Chapter 11 ), performing virtually the entire analysis workfl ow ( Chapter 13 ), and 
then starting the design of the architecture (Section 8.5.4). 
  The deliverables of the elaboration phase include [Jacobson, Booch, and Rumbaugh, 1999] 

   • The completed domain model.  
 •  The completed business model.  
 •  The completed requirements artifacts.  
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  • The completed analysis artifacts.  
 •  An updated version of the architecture.  
 •  An updated list of risks.  
  • The software project management plan (for the remainder of the project).  
  • The completed business case.    

  3.10.3 The Construction Phase 
 The aim of the   construction phase   (third increment) is to produce the fi rst operational-
quality version of the software product, the so-called beta release (Section 3.7.4). Consider 
 Figure 3.1  again. Even though the fi gure is only a symbolic representation of the phases, 
it is clear that the emphasis in this phase is on implementation and testing the software 
product. That is, the various components are coded and unit tested. The code artifacts are 
then compiled and linked (integrated) to form subsystems, which are integration tested. 
Finally, the subsystems are combined into the overall system, which is product tested. This 
was described in Section 3.7.4. 
  The deliverables of the construction phase include [Jacobson, Booch, and Rumbaugh, 1999] 

  •  The initial user manual and other manuals, as appropriate.  
  • All the artifacts (beta release versions).  
 •  The completed architecture.  
 •  The updated risk list.  
 •  The software project management plan (for the remainder of the project).  
  • If necessary, the updated business case.    

  3.10.4 The Transition Phase 
 The aim of the   transition phase   (fourth increment) is to ensure that the client’s require-
ments have indeed been met. This phase is driven by feedback from the sites at which the 
beta version has been installed. (In the case of a custom software product developed for 
a specifi c client, there is just one such site.) Faults in the software product are corrected. 
Also, all the manuals are completed. During this phase, it is important to try to discover any 
previously unidentifi ed risks. (The importance of uncovering risks even during the transi-
tion phase is highlighted in Just in Case You Wanted to Know Box 3.3.) 
  The deliverables of the transition phase include [Jacobson, Booch, and Rumbaugh, 
1999] 

   • All the artifacts (fi nal versions).  
  • The completed manuals.      

  3.11 One- versus Two-Dimensional Life-Cycle Models 
  A classical life-cycle model (like the waterfall model of Section 2.9.2) is a one-dimensional 
model, as represented by the single axis in  Figure 3.2 (a). Underlying the Unifi ed Process is 
a two-dimensional life-cycle model, as represented by the two axes in  Figure 3.2 (b). 
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 Just in Case You Wanted to Know      Box 3.3 

 A real-time system frequently is more complex than most people, even its developers, real-
ize. As a result, sometimes subtle interactions take place among components that even the 
most skilled testers usually would not detect. An apparently minor change therefore can 
have major consequences. 
  A famous example of this is the fault that delayed the fi rst space shuttle orbital fl ight in 
April 1981 [Garman, 1981]. The space shuttle avionics are controlled by four identical syn-
chronized computers. Also, an independent fi fth computer is ready for backup in case the 
set of four computers fails. Two years earlier, a change had been made to the module that 
performs initialization before the avionics computers are synchronized. An unfortunate side 
effect of this change was that a record containing a time just slightly later than the current 
time was erroneously sent to the data area used for synchronization of the avionics comput-
ers. The time sent was suffi ciently close to the actual time for this fault not to be detected. 
About 1 year later, the time difference was slightly increased, just enough to cause a 1 in 
67 chance of a failure. Then, on the day of the fi rst space shuttle launch, with hundreds 
of millions of people watching on television all over the world, the synchronization failure 
occurred and three of the four identical avionics computers were synchronized one cycle 
late relative to the fi rst computer. 
  A fail-safe device that prevents the independent fi fth computer from receiving informa-
tion from the other four computers unless they are in agreement had the unanticipated 
consequence of preventing initialization of the fi fth computer, and the launch had to be 
postponed. An all too familiar aspect of this incident was that the fault was in the initializa-
tion module, a module that apparently had no connection whatsoever with the synchroni-
zation routines. 
  Unfortunately, this was by no means the last real-time software fault affecting a space 
launch. For example, in April 1999, a Milstar military communications satellite was hurled 
into a uselessly low orbit at a cost of $1.2 billion; the cause was a software fault in the upper 
stage of the Titan 4 rocket [  Florida Today  , 1999]. 
  Not just space launches are affected by real-time faults but landings, too. In May 2003, 
a Soyuz TMA-1 spaceship launched from the international space station landed 300 miles 
off course in Kazakhstan after a ballistic descent. The cause of the landing problems was, yet 
again, a real-time software fault [CNN.com, 2003]. 

  The one-dimensional nature of the waterfall model is clearly refl ected in  Figure 2.3 . In 
contrast,  Figure 2.2  shows the evolution-tree model of the Winburg mini case study. This 
model is two-dimensional and should therefore be compared to  Figure 3.2 (b). 
  Are the additional complications of a two-dimensional model necessary? The answer 
was given in  Chapter 2 , but this is such an important issue that it is repeated here. During 
the development of a software product, in an ideal world, the requirements workfl ow would 
be completed before proceeding to the analysis workfl ow. Similarly, the analysis workfl ow 
would be completed before starting the design workfl ow, and so on. In reality, however, all 
but the most trivial software products are too large to handle as a single unit. Instead, the 
task has to be divided into increments (phases), and within each increment the develop-
ers have to iterate until they have completed the task under construction. As humans, we 
are limited by Miller’s Law [Miller, 1956], which states that we can actively process only 
seven concepts at a time. We therefore cannot deal with software products as a whole, but 
instead we have to break those systems into subsystems. Even subsystems can be too large 
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at times—components may be all that we can handle until we have a fuller understanding 
of the software product as a whole. 
  The Unifi ed Process is the best solution to date for treating a large problem as a set of 
smaller, largely independent subproblems. It provides a framework for incrementation and 
iteration, the mechanism used to cope with the complexity of large software products. 
  Another challenge that the Unifi ed Process handles well is the inevitable changes. One 
aspect of this challenge is changes in the client’s requirements while a software product is 
being developed, the so-called moving-target problem (Section 2.4). 
  For all these reasons, the Unifi ed Process is currently the best methodology available. 
However, in the future, the Unifi ed Process will doubtless be superseded by some new 
methodology. Today’s software professionals are looking beyond the Unifi ed Process to the 
next major breakthrough. After all, in virtually every fi eld of human endeavor, the discov-
eries of today are often superior to anything that was put forward in the past. The Unifi ed 
Process is sure to be superseded, in turn, by the methodologies of the future. The important 
lesson is that, based on   today’s   knowledge, the Unifi ed Process appears to be better than the 
other alternatives currently available. 
  The remainder of this chapter is devoted to national and international initiatives aimed 
at process improvement.   

  3.12 Improving the Software Process 
  Our global economy depends critically on computers and hence on software. For this rea-
son, the governments of many countries are concerned about the software process. For 
example, in 1987, a task force of the U.S. Department of Defense (DoD) reported, “After 
two decades of largely unfulfi lled promises about productivity and quality gains from 
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applying new software methodologies and technologies, industry and government organi-
zations are realizing that their fundamental problem is the inability to manage the software 
process” [Brooks et al., 1987]. 
  In response to this and related concerns, the DoD founded the Software Engineering In-
stitute (SEI) and set it up at Carnegie Mellon University in Pittsburgh on the basis of a com-
petitive procurement process. A major success of the SEI has been the capability maturity 
model (CMM) initiative. Related software process improvement efforts include the ISO 
9000-series standards of the International Organization for Standardization, and ISO/IEC 
15504, an international software improvement initiative involving more than 40 countries. 
We begin by describing the CMM.   

  3.13 Capability Maturity Models 
  The   capability maturity models   of the SEI are a related group of strategies for 
improving the software process, irrespective of the actual life-cycle model used. (The 
term   maturity   is a measure of the goodness of the process itself.) The SEI has developed 
CMMs for software (SW–CMM), for management of human resources (P–CMM; the   P   
stands for “people”), for systems engineering (SE–CMM), for integrated product develop-
ment (IPD–CMM), and for software acquisition (SA–CMM). There are some inconsisten-
cies between the models and an inevitable level of redundancy. Accordingly, in 1997, it was 
decided to develop a single integrated framework for maturity models, capability maturity 
model integration (CMMI), which incorporates all fi ve existing capability maturity mod-
els. Additional disciplines may be added to CMMI in the future [SEI, 2002]. 
  For reasons of space, only one capability maturity model, SW–CMM, is examined here, 
and an overview of the P–CMM is given in Section 4.8. The SW–CMM was fi rst put 
forward in 1986 by Watts Humphrey [Humphrey, 1989]. Recall that a software process 
encompasses the activities, techniques, and tools used to produce software. It therefore 
incorporates both technical and managerial aspects of software production. Underlying the 
SW–CMM is the belief that the use of new software techniques in itself will not result in 
increased productivity and profi tability, because our problems are caused by how we man-
age the software process. The strategy of the SW–CMM is to improve the management 
of the software process in the belief that improvements in technique are a natural conse-
quence. The resulting improvement in the process as a whole should result in better-quality 
software and fewer software projects that suffer from time and cost overruns. 
  Bearing in mind that improvements in the software process cannot occur overnight, the 
SW–CMM induces change incrementally. More specifi cally, fi ve levels of maturity are 
defi ned, and an organization advances slowly in a series of small evolutionary steps toward 
the higher levels of process maturity [Paulk, Weber, Curtis, and Chrissis, 1995]. To under-
stand this approach, the fi ve levels now are described. 

     Maturity Level 1. Initial Level 
 At the   initial level  , the lowest level, essentially no sound software engineering manage-
ment practices are in place in the organization. Instead, everything is done on an ad hoc 
basis. A specifi c project that happens to be staffed by a competent manager and a good 
software development team may be successful. However, the usual pattern is time and cost 
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overruns caused by a lack of sound management in general and planning in particular. 
As a result, most activities are responses to crises rather than preplanned tasks. In level-1 
organizations, the software process is unpredictable, because it depends totally on the cur-
rent staff; as the staff changes, so does the process. As a consequence, it is impossible to 
predict with any accuracy such important items as the time it will take to develop a product 
or the cost of that product. 
  It is unfortunate that the vast majority of software organizations all over the world are 
still level-1 organizations.  

  Maturity Level 2. Repeatable Level 
 At the   repeatable level  , basic software project management practices are in place. Plan-
ning and management techniques are based on experience with similar products; hence, 
the name   repeatable  . At level 2, measurements are taken, an essential fi rst step in achieving 
an adequate process. Typical measurements include the meticulous tracking of costs and 
schedules. Instead of functioning in a crisis mode, as in level 1, managers identify problems 
as they arise and take immediate corrective action to prevent them from becoming crises. 
The key point is that, without measurements, it is impossible to detect problems before 
they get out of hand. Also, measurements taken during one project can be used to draw up 
realistic duration and cost schedules for future projects.  

  Maturity Level 3. Defi ned Level 
 At the   defi ned level  , the process for software production is fully documented. Both 
the managerial and technical aspects of the process are clearly defi ned, and continual 
efforts are made to improve the process wherever possible. Reviews (Section 6.2) are 
used to achieve software quality goals. At this level, it makes sense to introduce new 
technology, such as CASE environments (Section 5.8), to increase quality and produc-
tivity further. In contrast, “high tech” only makes the crisis-driven level-1 process even 
more chaotic. 
  Although a number of organizations have attained maturity levels 2 and 3, few have 
reached levels 4 or 5. The two highest levels therefore are targets for the future.  

  Maturity Level 4. Managed Level 
 A   managed-level   organization sets quality and productivity goals for each project. 
These two quantities are measured continually and corrective action is taken when there 
are unacceptable deviations from the goal. Statistical quality controls ([Deming, 1986], 
[Juran, 1988]) are in place to enable management to distinguish a random deviation from a 
meaningful violation of quality or productivity standards. (A simple example of a statistical 
quality control measure is the number of faults detected per 1000 lines of code. A corre-
sponding objective is to reduce this quantity over time.)  

  Maturity Level 5. Optimizing Level 
 The goal of an   optimizing-level   organization is continuous process improvement. Sta-
tistical quality and process control techniques are used to guide the organization. The 
knowledge gained from each project is utilized in future projects. The process therefore 
incorporates a positive feedback loop, resulting in a steady improvement in productivity 
and quality. 
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  These fi ve maturity levels are summarized in  Figure 3.3 , which also shows the key 
process areas (KPAs) associated with each maturity level. To improve its software process, 
an organization fi rst attempts to gain an understanding of its current process and then 
formulates the intended process. Next, actions to achieve this process improvement are 
determined and ranked in priority. Finally, a plan to accomplish this improvement is drawn 
up and executed. This series of steps is repeated, with the organization successively im-
proving its software process; this progression from level to level is refl ected in  Figure 3.3 . 
Experience with the capability maturity model has shown that advancing a complete 
maturity level usually takes from 18 months to 3 years, but moving from level 1 to level 2 
can sometimes take 3 or even 5 years. This is a refl ection of how diffi cult it is to instill a 
methodical approach in an organization that up to now has functioned on a purely ad hoc 
and reactive basis. 

 FIGURE 3.3     
The fi ve levels 
of the software 
capability 
maturity model 
and their key 
process areas 
(KPAs). 

2. Repeatable level:
Basic project management

Requirements management
Software project planning
Software project tracking and oversight
Software subcontract management
Software quality assurance
Software configuration management

1. Initial level:
Ad hoc process

Not applicable

3. Defined level:
Process definition

Organization process focus
Organization process definition
Training program
Integrated software management
Software project engineering
Intergroup coordination
Peer reviews

4. Managed level:
Process measurement

Quantitative process management
Software quality management

5. Optimizing level:
Process control

Defect prevention
Technology change management
Process change management
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  For each maturity level, the SEI has highlighted a series of   key process areas   (KPAs) that 
an organization should target in its endeavor to reach the next maturity level. For example, as 
shown in  Figure 3.3 , the KPAs for level 2 (repeatable level) include confi guration management 
(Section 5.10), software quality assurance (Section 6.1.1), project planning ( Chapter 9 ), project 
tracking (Section 9.2.5), and requirements management ( Chapter 11 ). These areas cover the 
basic elements of software management: Determine the client’s needs (requirements manage-
ment), draw up a plan (project planning), monitor deviations from that plan (project tracking), 
control the various pieces that make up the software product key process area (confi guration 
management), and ensure that the product is fault free (quality assurance). Within each KPA is a 
group of between two and four related goals that, if achieved, result in that maturity level being 
attained. For example, one project planning goal is the development of a plan that appropriately 
and realistically covers the activities of software development. 
  At the highest level, maturity level 5, the KPAs include fault prevention, technology 
change management, and process change management. Comparing the KPAs of the two 
levels, it is clear that a level-5 organization is far in advance of one at level 2. For example, 
a level-2 organization is concerned with software quality assurance, that is, with detecting 
and correcting faults (software quality is discussed in more detail in  Chapter 6 ). In con-
trast, the process of a level-5 organization incorporates fault prevention, that is, trying to 
ensure that no faults are in the software in the fi rst place. To help an organization to reach 
the higher maturity levels, the SEI has developed a series of questionnaires that form the 
basis for an assessment by an SEI team. The purpose of the assessment is to highlight cur-
rent shortcomings in the organization’s software process and to indicate ways in which the 
organization can improve its process. 
  The CMM program of the Software Engineering Institute was sponsored by the U.S. 
Department of Defense. One of the original goals of the CMM program was to raise the 
quality of defense software by evaluating the processes of contractors who produce soft-
ware for the DoD and awarding contracts to those contractors who demonstrate a mature 
process. The U.S. Air Force stipulated that any software development organization that 
wished to be an Air Force contractor had to conform to SW–CMM level 3 by 1998, and the 
DoD as a whole subsequently issued a similar directive. Consequently, pressure is put on 
organizations to improve the maturity of their software processes. However, the SW–CMM 
program has moved far beyond the limited goal of improving DoD software and is being 
implemented by a wide variety of software organizations that wish to improve software 
quality and productivity.     

  3.14 Other Software Process Improvement Initiatives 
  A different attempt to improve software quality is based on the   International Organiza-
tion for Standardization   (ISO) 9000-series standards, a series of fi ve related standards 
applicable to a wide variety of industrial activities, including design, development, produc-
tion, installation, and servicing; ISO 9000 certainly is not just a software standard. Within 
the ISO 9000 series, standard   ISO 9001   [1987] for quality systems is the standard most 
applicable to software development. Because of the broadness of ISO 9001, ISO has pub-
lished specifi c guidelines to assist in applying ISO 9001 to software:   ISO 9000-3   [1991]. 
(For more information on ISO, see Just in Case You Wanted to Know Box 1.4.) 
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  ISO 9000 has a number of features that distinguish it from the CMM [Dawood, 1994]. 
ISO 9000 stresses documenting the process in both words and pictures to ensure consis-
tency and comprehensibility. Also, the ISO 9000 philosophy is that adherence to the stan-
dard does not guarantee a high-quality product but rather reduces the risk of a poor-quality 
product. ISO 9000 is only part of a quality system. Also required are management commit-
ment to quality, intensive training of workers, and setting and achieving goals for continual 
quality improvement. ISO 9000-series standards have been adopted by over 60 countries, 
including the United States, Japan, Canada, and the countries of the European Union (EU). 
This means, for example, that if a U.S. software organization wishes to do business with a 
European client, the U.S. organization must fi rst be certifi ed as ISO 9000 compliant. A cer-
tifi ed registrar (auditor) has to examine the company’s process and certify that it complies 
with the ISO standard. 
  Following their European counterparts, more and more U.S. organizations are requiring 
ISO 9000 certifi cation. For example, General Electric Plastic Division insisted that 340 
vendors achieve the standard by June 1993 [Dawood, 1994]. It is unlikely that the U.S. gov-
ernment will follow the EU lead and require ISO 9000 compliance for non-U.S. companies 
that wish to do business with organizations in the United States. Nevertheless, pressures 
both within the United States and from its major trading partners ultimately may result in 
signifi cant worldwide ISO 9000 compliance. 
    ISO/IEC 15504   is an international process improvement initiative, like ISO 9000. 
The initiative was formerly known as   SPICE  , an acronym formed from Software Process 
Improvement Capability dEtermination. Over 40 countries actively contributed to the 
SPICE endeavor. SPICE was initiated by the British Ministry of Defence (MOD) with 
the long-term aim of establishing SPICE as an international standard (MOD is the UK 
counterpart of the U.S. DoD, which initiated the CMM). The fi rst version of SPICE was 
completed in 1995. In July 1997, the SPICE initiative was taken over by a joint committee 
of the International Organization for Standardization and the International Electrotechni-
cal Commission. For this reason, the name of the initiative was changed from SPICE to 
ISO/IEC 15504, or 15504 for short.   

  3.15 Costs and Benefi ts of Software Process Improvement 
  Does implementing software process improvement lead to increased profi tability? Results 
indicate that this indeed is the case. For example, the Software Engineering Division of 
Hughes Aircraft in Fullerton, California, spent nearly $500,000 between 1987 and 1990 
for assessments and improvement programs [Humphrey, Snider, and Willis, 1991]. During 
this 3-year period, Hughes Aircraft moved up from maturity level 2 to level 3, with every 
expectation of future improvement to level 4 and even level 5. As a consequence of improv-
ing its process, Hughes Aircraft estimated its annual savings to be on the order of $2 million. 
These savings accrued in a number of ways, including decreased overtime hours, fewer cri-
ses, improved employee morale, and lower turnover of software professionals. 
  Comparable results have been reported at other organizations. For example, the Equip-
ment Division at Raytheon moved from level 1 in 1988 to level 3 in 1993. A twofold 
increase in productivity resulted, as well as a return of $7.70 for every dollar invested in 
the process improvement effort [Dion, 1993]. As a consequence of results like these, the 
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capability maturity models are being applied rather widely within the U.S. software indus-
try and abroad. 
  For example, Tata Consultancy Services in India used both the ISO 9000 framework 
and CMM to improve its process [Keeni, 2000]. Between 1996 and 2000, the errors in 
effort estimation decreased from about 50 percent to only 15 percent. The effectiveness 
of reviews (that is, the percentage of faults found during reviews) increased from 40 to 
80 percent. The percentage of effort devoted to reworking projects dropped from nearly 
12 percent to less than 6 percent. 
  Motorola Government Electronics Division (GED) has been actively involved in SEI’s 
software process improvement program since 1992 [Diaz and Sligo, 1997].  Figure 3.4  
depicts 34 GED projects, categorized according to the maturity level of the group that 
developed each project. As can be seen from the fi gure, the relative duration (that is, the 
duration of a project relative to a baseline project completed before 1992) decreased with 
increasing maturity level. Quality was measured in terms of faults per million equivalent 
assembler source lines (MEASL); to be able to compare projects implemented in different 
languages, the number of lines of source code was converted into the number of equiva-
lent lines of assembler code [Jones, 1996]. As shown in  Figure 3.4 , quality increased with 
increasing maturity level. Finally, productivity was measured as MEASL per person-hour. 
For reasons of confi dentiality, Motorola does not publish actual productivity fi gures, so 
 Figure 3.4  refl ects productivity relative to the productivity of a level-2 project. (No quality 
or productivity fi gures are available for the level-1 projects because these quantities cannot 
be measured when the team is at level 1.) 
  Galin and Avrahami [2006] analyzed 85 projects that had previously been reported in the 
literature as having advanced by one level as a consequence of implementing CMM. These 
projects were divided into four groups (CMM level 1 to level 2, CMM level 2 to level 3, and 
so on). For the four groups, the median fault density (number of faults per KLOC) decreased 
by between 26 and 63 percent. The median productivity (KLOC per person month) increased 
by between 26 and 187 percent. Median rework decreased by between 34 and 40 percent. The 
median project duration decreased by between 28 and 53 percent. Fault detection effective-
ness (percentage of faults detected during development of the total detected project faults) 
increased as follows: For the three lowest groups, the median increased by between 70 and 
74 percent, and 13 percent for the highest group (CMM level 4 to level 5). The return on 
investment varied between 120 and 650 percent, with a median value of 360 percent. 

 FIGURE 3.4     Results of 34 Motorola GED projects (MEASL stands for “million equivalent assembler source lines”) 
[Diaz and Sligo, 1997]. (© 1997, IEEE.)   

                          Relative     Faults per MEASL        
        Number of     Decrease in     Detected during     Relative   
   CMM Level     Projects     Duration     Development     Productivity    

    Level 1     3     1.0      —      —   
   Level 2     9     3.2     890     1.0   
   Level 3     5     2.7     411     0.8   
   Level 4     8     5.0     205     2.3   
   Level 5     9     7.8     126     2.8      
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  As a consequence of published studies such as those described in this section and those 
listed in the For Further Reading section of this chapter, more and more organizations 
worldwide are realizing that process improvement is cost effective. 
  An interesting side effect of the process improvement movement has been the interac-
tion between software process improvement initiatives and software engineering stan-
dards. For example, in 1995 the International Organization for Standardization published 
ISO/IEC 12207, a full life-cycle software standard [ISO/IEC 12207, 1995]. Three years 
later, a U.S. version of the standard [IEEE/EIA 12207.0-1996, 1998] was published by the 
Institute of Electrical and Electronic Engineers (IEEE) and the Electronic Industries Alli-
ance (EIA). This version incorporates U.S. software “best practices,” many of which can 
be traced back to CMM. To achieve compliance with IEEE/EIA 12207, an organization 
must be at or near CMM capability level 3 [Ferguson and Sheard, 1998]. Also, ISO 9000-3 
now incorporates parts of ISO/IEC 12207. This interplay between software engineering 
standards organizations and software process improvement initiatives surely will lead to 
even better software processes. 
  Another dimension of software process improvement appears in Just in Case You Wanted 
to Know Box 3.4.    

 Just in Case You Wanted to Know      Box 3.4 
 There are constraints on the speed of hardware because electrons cannot travel faster than 
the speed of light. In a famous article entitled “No Silver Bullet,” Brooks [1986] suggested 
that inherent problems exist in software production, and that these problems can never be 
solved because of analogous constraints on software. Brooks argued that intrinsic proper-
ties of software, such as its complexity, the fact that software is invisible and unvisualizable, 
and the numerous changes to which software is typically subjected over its lifetime, make 
it unlikely that there will ever be an order-of-magnitude increment (or “silver bullet”) in 
software process improvement. 

   Chapter 
Review 
  After some preliminary defi nitions, the Unifi ed Process is introduced in Section 3.1. The impor-

tance of iteration and incrementation within the object-oriented paradigm is described in Section 
3.2. Now the core workfl ows of the Unifi ed Process are explained in detail; the requirements 
workfl ow (Section 3.3), analysis workfl ow (Section 3.4), design workfl ow (Section 3.5), imple-
mentation workfl ow (Section 3.6), and test workfl ow (Section 3.7). The various artifacts tested 
during the test workfl ow are described in Sections 3.7.1 through 3.7.4. Postdelivery maintenance 
is discussed in Section 3.8, and retirement in Section 3.9. The relationship between the work-
fl ows and the phases of the Unifi ed Process is analyzed in Section 3.10, and a detailed descrip-
tion is given of the four phases of the Unifi ed Process: the inception phase (Section 3.10.1), the 
elaboration phase (Section 3.10.2), the construction phase (Section 3.10.3), and the transition 
phase (Section 3.10.4). The importance of two-dimensional life-cycle models is discussed in 
Section 3.11. 
  The last part of the chapter is devoted to software process improvement (Section 3.12). Details 
are given of various national and international software improvement initiatives, including the capa-
bility maturity models (Section 3.13), and ISO 9000 and ISO/IEC 15504 (Section 3.14). The cost-
effectiveness of software process improvement is discussed in Section 3.15.  
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  The March–April 2003 issue of   IEEE Software   contains a number of articles on the software process, 
including [Eickelmann and Anant, 2003], a discussion of statistical process control. Practical applications 
of statistical process control are described in [Weller, 2000] and [Florac, Carleton, and Barnard, 2000]. 
  With regard to testing during each workfl ow, an excellent source is [Ammann and Offutt, 2008]. 
More specifi c references are given in  Chapter 6  of this book and in the For Further Reading section 
at the end of that chapter. 
  A detailed description of the original SEI capability maturity model is given in [Humphrey, 
1989]. Capability maturity model integration is described in [SEI, 2002]. Humphrey [1996] 
describes a personal software process (PSP); results of applying the PSP appear in [Ferguson 
et al., 1997]. The results of an experiment to measure the effectiveness of PSP training are pre-
sented in [Prechelt and Unger, 2000]. Extensions needed to the Unifi ed Process for it to comply 
with CMM levels 2 and 3 are presented in [Manzoni and Price, 2003]. Implementing SW–CMM 
in small organizations is described in [Guerrero and Eterovic, 2004] and [Dangle, Larsen, Shaw, 
and Zelkowitz, 2005]. The July–August 2000 issue of   IEEE Software   has three papers on software 
process maturity, and there are four papers on the PSP in the November–December 2000 issue of 
  IEEE Software  . 
  A compendium of the results of many studies of process improvement appears in [Galin and 
Avrahami, 2006]. 
  Pitterman [2000] describes how a group at Telecordia Technologies reached level 5; a study of how 
a Computer Sciences Corporation group attained level 5 appears in [McGarry and Decker, 2002]. 
Insights into the nature of level-5 organizations appear in [Eickelmann, 2003] and [Agrawal and 
Chari, 2007]. Cost–benefi t analysis of software process improvement is described in [van Solingen, 
2004]. An empirical investigation of the key factors for success in software process improvement is 
presented in [Dybå, 2005]. 
  Problems of software product improvement appear in [Conradi and Fuggetta, 2002]. The results of 
18 different software process improvement initiatives conducted at Ericsson are described in [Borjes-
son and Mathiassen, 2004]. A wealth of information on the CMM is available at the SEI CMM 
website  www.sei.cmu.edu . An assessment of the success of the SPICE project can be found in 
[Rout et al., 2007]. The ISO/IEC 15504 (SPICE) home page is at  www.sei.cmu.edu/technology/
process/spice/ . 
  A comparison between CMM and IEEE/EIA 12207 is given in [Ferguson and Sheard, 1998], and 
a comparison between CMM and Six Sigma (another approach to process improvement) appears in 
[Murugappan and Keeni, 2003]. An approach to implementing both ISO 9001 and CMMI appears 
in [Yoo et al., 2006]. A repository containing the results of some 400 software improvement experi-
ments is described in [Blanco, Gutiérrez, and Satriani, 2001].  
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     3.1  Defi ne the terms   software process   and   Unifi ed Process  .  

   3.2 In the software engineering context, what is meant by the term   model  ?  

   3.3  What is meant by a   phase   of the Unifi ed Process?  

   3.4  Distinguish clearly between an ambiguity, a contradiction, and incompleteness.  

   3.5  Consider the requirements workfl ow and the analysis workfl ow. Would it make more sense to 
combine these two activities into one workfl ow than to treat them separately?  

   3.6 More testing is performed during the implementation workfl ow than in any other workfl ow. 
Would it be better to divide this workfl ow into two separate workfl ows, one incorporating the 
nontesting aspects, the other all the testing?  

   3.7 “Correctness is the responsibility of the SQA group.” Discuss this statement.  

   3.8 Maintenance is the most important activity of software production and the most diffi cult to 
perform. Nevertheless, it is looked down on by many software professionals, and maintenance 
programmers often are paid less than developers. Do you think that this is reasonable? If not, 
how would you try to change it?  

   3.9 Why do you think that, as stated in Section 3.9, true retirement is a rare event?  

  3.10  Because of a fi re at Elmer’s Software, all documentation for a product is destroyed just before 
it is delivered. What is the impact of the resulting lack of documentation?  

  3.11  You have just purchased Antedeluvian Software Developers, an organization on the verge of 
bankruptcy because the company is at maturity level 1. What is the fi rst step you will take to 
restore the organization to profi tability?  

  3.12  Section 3.13 states that it makes little sense to introduce CASE environments within organiza-
tions at maturity level 1 or 2. Explain why this is so.  

  3.13  What is the effect of introducing CASE tools (as opposed to environments) within organiza-
tions with a low maturity level?  

  3.14  Maturity level 1, the initial level, refers to an absence of good software engineering manage-
ment practices. Would it not have been better for the SEI to have labeled the initial level as 
maturity level 0?  

  3.15  (Term Project) What differences would you expect to fi nd if the Chocoholics Anonymous prod-
uct of Appendix A were developed by an organization at CMM level 1, as opposed to an orga-
nization at level 5?  

  3.16  (Readings in Software Engineering) Your instructor will distribute copies of [Agrawal and 
Chari, 2007]. Would you like to work in a level-5 organization? Explain your answer.    

  Problems 
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