
Software engineering
tenth edition

Ian Sommerville

Boston Columbus Indianapolis New York San Francisco Hoboken

Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto

Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Introduction
1

Objectives
The objectives of this chapter are to introduce software engineering and
to provide a framework for understanding the rest of the book. When you
have read this chapter, you will:

■ understand what software engineering is and why it is important;

■ understand that the development of different types of software
system may require different software engineering techniques;

■ understand ethical and professional issues that are important
for software engineers;

■ have been introduced to four systems, of different types, which are
used as examples throughout the book.

Contents
1.1 Professional software development

1.2 Software engineering ethics

1.3 Case studies

18    Chapter 1  ■  Introduction

Software engineering is essential for the functioning of government, society, and national
and international businesses and institutions. We can’t run the modern world without
software. National infrastructures and utilities are controlled by computer-based systems,
and most electrical products include a computer and controlling software. Industrial
manufacturing and distribution is completely computerized, as is the financial system.
Entertainment, including the music industry, computer games, and film and television, is
software-intensive. More than 75% of the world’s population have a software-controlled
mobile phone, and, by 2016, almost all of these will be Internet-enabled.

Software systems are abstract and intangible. They are not constrained by the prop-
erties of materials, nor are they governed by physical laws or by manufacturing pro-
cesses. This simplifies software engineering, as there are no natural limits to the potential
of software. However, because of the lack of physical constraints, software systems can
quickly become extremely complex, difficult to understand, and expensive to change.

There are many different types of software system, ranging from simple embed-
ded systems to complex, worldwide information systems. There are no universal
notations, methods, or techniques for software engineering because different types
of software require different approaches. Developing an organizational information
system is completely different from developing a controller for a scientific instru-
ment. Neither of these systems has much in common with a graphics-intensive com-
puter game. All of these applications need software engineering; they do not all need
the same software engineering methods and techniques.

There are still many reports of software projects going wrong and of “software
failures.” Software engineering is criticized as inadequate for modern software
development. However, in my opinion, many of these so-called software failures
are a consequence of two factors:

1. Increasing system complexity As new software engineering techniques help us
to build larger, more complex systems, the demands change. Systems have to be
built and delivered more quickly; larger, even more complex systems are
required; and systems have to have new capabilities that were previously
thought to be impossible. New software engineering techniques have to be
developed to meet new the challenges of delivering more complex software.

2. Failure to use software engineering methods It is fairly easy to write computer
programs without using software engineering methods and techniques. Many
companies have drifted into software development as their products and ser-
vices have evolved. They do not use software engineering methods in their every-
day work. Consequently, their software is often more expensive and less reliable
than it should be. We need better software engineering education and training to
address this problem.

Software engineers can be rightly proud of their achievements. Of course, we still
have problems developing complex software, but without software engineering we
would not have explored space and we would not have the Internet or modern tele-
communications. All forms of travel would be more dangerous and expensive.
Challenges for humanity in the 21st century are climate change, fewer natural

  1.1  ■  Professional software development    19

resources, changing demographics, and an expanding world population. We will rely
on software engineering to develop the systems that we need to cope with these issues.

	 1.1	 Professional	software	development

Lots of people write programs. People in business write spreadsheet programs to
simplify their jobs; scientists and engineers write programs to process their experi-
mental data; hobbyists write programs for their own interest and enjoyment.
However, most software development is a professional activity in which software is
developed for business purposes, for inclusion in other devices, or as software prod-
ucts such as information systems and computer-aided design systems. The key dis-
tinctions are that professional software is intended for use by someone apart from its
developer and that teams rather than individuals usually develop the software. It is
maintained and changed throughout its life.

Software engineering is intended to support professional software development
rather than individual programming. It includes techniques that support program
specification, design, and evolution, none of which are normally relevant for per-
sonal software development. To help you to get a broad view of software engineer-
ing, I have summarized frequently asked questions about the subject in Figure 1.1.

Many people think that software is simply another word for computer programs.
However, when we are talking about software engineering, software is not just the
programs themselves but also all associated documentation, libraries, support web-
sites, and configuration data that are needed to make these programs useful. A pro-
fessionally developed software system is often more than a single program. A system
may consist of several separate programs and configuration files that are used to set
up these programs. It may include system documentation, which describes the struc-
ture of the system, user documentation, which explains how to use the system, and
websites for users to download recent product information.

This is one of the important differences between professional and amateur soft-
ware development. If you are writing a program for yourself, no one else will use it

History of software engineering

The notion of software engineering was first proposed in 1968 at a conference held to discuss what was then
called the software crisis (Naur and Randell 1969). It became clear that individual approaches to program devel-
opment did not scale up to large and complex software systems. These were unreliable, cost more than
expected, and were delivered late.

Throughout the 1970s and 1980s, a variety of new software engineering techniques and methods were
developed, such as structured programming, information hiding, and object-oriented development. Tools and
standard notations were developed which are the basis of today’s software engineering.

http://software-engineering-book.com/web/history/

20    Chapter 1  ■  Introduction

Figure 1.1 Frequently
asked questions about
software engineering

Question Answer

What is software? Computer programs and associated documentation. Software
products may be developed for a particular customer or may be
developed for a general market.

What are the attributes of good
software?

Good software should deliver the required functionality and
performance to the user and should be maintainable, dependable
and usable.

What is software engineering? Software engineering is an engineering discipline that is concerned
with all aspects of software production from initial conception to
operation and maintenance.

What are the fundamental
software engineering activities?

Software specification, software development, software validation
and software evolution.

What is the difference between
software engineering and
computer science?

Computer science focuses on theory and fundamentals; software
engineering is concerned with the practicalities of developing and
delivering useful software.

What is the difference between
software engineering and system
engineering?

System engineering is concerned with all aspects of computer-
based systems development including hardware, software and
process engineering. Software engineering is part of this more
general process.

What are the key challenges
facing software engineering?

Coping with increasing diversity, demands for reduced delivery
times and developing trustworthy software.

What are the costs of software
engineering?

Roughly 60% of software costs are development costs, 40% are
testing costs. For custom software, evolution costs often exceed
development costs.

What are the best software
engineering techniques and
methods?

While all software projects have to be professionally managed and
developed, different techniques are appropriate for different types
of system. For example, games should always be developed using
a series of prototypes whereas safety critical control systems
require a complete and analyzable specification to be developed.
There are no methods and techniques that are good for everything.

What differences has the Internet
made to software engineering?

Not only has the Internet led to the development of massive, highly
distributed, service-based systems, it has also supported the
creation of an “app” industry for mobile devices which has
changed the economics of software.

and you don’t have to worry about writing program guides, documenting the pro-
gram design, and so on. However, if you are writing software that other people will
use and other engineers will change, then you usually have to provide additional
information as well as the code of the program.

Software engineers are concerned with developing software products, that is,
software that can be sold to a customer. There are two kinds of software product:

1. Generic products These are stand-alone systems that are produced by a
development organization and sold on the open market to any customer who is
able to buy them. Examples of this type of product include apps for mobile
devices, software for PCs such as databases, word processors, drawing packages,
and project management tools. This kind of software also includes “vertical”

  1.1  ■  Professional software development    21

applications designed for a specific market such as library information systems,
accounting systems, or systems for maintaining dental records.

2. Customized (or bespoke) software These are systems that are commissioned by
and developed for a particular customer. A software contractor designs and
implements the software especially for that customer. Examples of this type of
software include control systems for electronic devices, systems written to
support a particular business process, and air traffic control systems.

The critical distinction between these types of software is that, in generic prod-
ucts, the organization that develops the software controls the software specification.
This means that if they run into development problems, they can rethink what is to
be developed. For custom products, the specification is developed and controlled by
the organization that is buying the software. The software developers must work to
that specification.

However, the distinction between these system product types is becoming increas-
ingly blurred. More and more systems are now being built with a generic product as
a base, which is then adapted to suit the requirements of a customer. Enterprise
Resource Planning (ERP) systems, such as systems from SAP and Oracle, are the
best examples of this approach. Here, a large and complex system is adapted for a
company by incorporating information about business rules and processes, reports
required, and so on.

When we talk about the quality of professional software, we have to consider that
the software is used and changed by people apart from its developers. Quality is
therefore not just concerned with what the software does. Rather, it has to include the
software’s behavior while it is executing and the structure and organization of the sys-
tem programs and associated documentation. This is reflected in the software’s qual-
ity or non-functional attributes. Examples of these attributes are the software’s
response time to a user query and the understandability of the program code.

The specific set of attributes that you might expect from a software system obvi-
ously depends on its application. Therefore, an aircraft control system must be safe, an
interactive game must be responsive, a telephone switching system must be reliable,
and so on. These can be generalized into the set of attributes shown in Figure 1.2,
which I think are the essential characteristics of a professional software system.

	 1.1.1		 Software	engineering

Software engineering is an engineering discipline that is concerned with all aspects
of software production from the early stages of system specification through to
maintaining the system after it has gone into use. In this definition, there are two
key phrases:

1. Engineering discipline Engineers make things work. They apply theories, meth-
ods, and tools where these are appropriate. However, they use them selectively

22    Chapter 1  ■  Introduction

Figure 1.2 Essential
attributes of good
software

Product characteristic Description

Acceptability Software must be acceptable to the type of users for which it is
designed. This means that it must be understandable, usable, and
compatible with other systems that they use.

Dependability and security Software dependability includes a range of characteristics including
reliability, security, and safety. Dependable software should not
cause physical or economic damage in the event of system failure.
Software has to be secure so that malicious users cannot access or
damage the system.

Efficiency Software should not make wasteful use of system resources such
as memory and processor cycles. Efficiency therefore includes
responsiveness, processing time, resource utilization, etc.

Maintainability Software should be written in such a way that it can evolve to
meet the changing needs of customers. This is a critical attribute
because software change is an inevitable requirement of a
changing business environment.

and always try to discover solutions to problems even when there are no appli-
cable theories and methods. Engineers also recognize that they must work
within organizational and financial constraints, and they must look for solutions
within these constraints.

2. All aspects of software production Software engineering is not just concerned
with the technical processes of software development. It also includes activities
such as software project management and the development of tools, methods,
and theories to support software development.

Engineering is about getting results of the required quality within schedule and
budget. This often involves making compromises—engineers cannot be perfection-
ists. People writing programs for themselves, however, can spend as much time as
they wish on the program development.

In general, software engineers adopt a systematic and organized approach to their
work, as this is often the most effective way to produce high-quality software.
However, engineering is all about selecting the most appropriate method for a set of
circumstances, so a more creative, less formal approach to development may be the
right one for some kinds of software. A more flexible software process that accom-
modates rapid change is particularly appropriate for the development of interactive
web-based systems and mobile apps, which require a blend of software and graphi-
cal design skills.

Software engineering is important for two reasons:

1. More and more, individuals and society rely on advanced software systems. We need
to be able to produce reliable and trustworthy systems economically and quickly.

2. It is usually cheaper, in the long run, to use software engineering methods and
techniques for professional software systems rather than just write programs as

  1.1  ■  Professional software development    23

a personal programming project. Failure to use software engineering method
leads to higher costs for testing, quality assurance, and long-term maintenance.

The systematic approach that is used in software engineering is sometimes called
a software process. A software process is a sequence of activities that leads to the
production of a software product. Four fundamental activities are common to all
software processes.

1. Software specification, where customers and engineers define the software that
is to be produced and the constraints on its operation.

2. Software development, where the software is designed and programmed.

3. Software validation, where the software is checked to ensure that it is what the
customer requires.

4. Software evolution, where the software is modified to reflect changing customer
and market requirements.

Different types of systems need different development processes, as I explain in
Chapter 2. For example, real-time software in an aircraft has to be completely speci-
fied before development begins. In e-commerce systems, the specification and the
program are usually developed together. Consequently, these generic activities may
be organized in different ways and described at different levels of detail, depending
on the type of software being developed.

Software engineering is related to both computer science and systems engineering.

1. Computer science is concerned with the theories and methods that underlie
computers and software systems, whereas software engineering is concerned
with the practical problems of producing software. Some knowledge of com-
puter science is essential for software engineers in the same way that some
knowledge of physics is essential for electrical engineers. Computer science
theory, however, is often most applicable to relatively small programs. Elegant
theories of computer science are rarely relevant to large, complex problems that
require a software solution.

2. System engineering is concerned with all aspects of the development and evolu-
tion of complex systems where software plays a major role. System engineering
is therefore concerned with hardware development, policy and process design,
and system deployment, as well as software engineering. System engineers are
involved in specifying the system, defining its overall architecture, and then
integrating the different parts to create the finished system.

As I discuss in the next section, there are many different types of software. There are
no universal software engineering methods or techniques that may be used. However,
there are four related issues that affect many different types of software:

24    Chapter 1  ■  Introduction

1. Heterogeneity Increasingly, systems are required to operate as distributed sys-
tems across networks that include different types of computer and mobile
devices. As well as running on general-purpose computers, software may also
have to execute on mobile phones and tablets. You often have to integrate new
software with older legacy systems written in different programming languages.
The challenge here is to develop techniques for building dependable software
that is flexible enough to cope with this heterogeneity.

2. Business and social change Businesses and society are changing incredibly
quickly as emerging economies develop and new technologies become availa-
ble. They need to be able to change their existing software and to rapidly
develop new software. Many traditional software engineering techniques are
time consuming, and delivery of new systems often takes longer than planned.
They need to evolve so that the time required for software to deliver value to its
customers is reduced.

3. Security and trust As software is intertwined with all aspects of our lives, it is
essential that we can trust that software. This is especially true for remote soft-
ware systems accessed through a web page or web service interface. We have to
make sure that malicious users cannot successfully attack our software and that
information security is maintained.

4. Scale Software has to be developed across a very wide range of scales, from
very small embedded systems in portable or wearable devices through to
Internet-scale, cloud-based systems that serve a global community.

To address these challenges, we will need new tools and techniques as well as
innovative ways of combining and using existing software engineering methods.

	 1.1.2		 Software	engineering	diversity

Software engineering is a systematic approach to the production of software
that takes into account practical cost, schedule, and dependability issues, as
well as the needs of software customers and producers. The specific methods,
tools, and techniques used depend on the organization developing the software,
the type of software, and the people involved in the development process. There
are no universal software engineering methods that are suitable for all systems
and all companies. Rather, a diverse set of software engineering methods and
tools has evolved over the past 50 years. However, the SEMAT initiative
(Jacobson et al. 2013) proposes that there can be a fundamental meta-process
that can be instantiated to create different kinds of process. This is at an early
stage of development and may be a basis for improving our current software
engineering methods.

Perhaps the most significant factor in determining which software engineering
methods and techniques are most important is the type of application being devel-
oped. There are many different types of application, including:

  1.1  ■  Professional software development    25

1. Stand-alone applications These are application systems that run on a personal
computer or apps that run on a mobile device. They include all necessary func-
tionality and may not need to be connected to a network. Examples of such
applications are office applications on a PC, CAD programs, photo manipula-
tion software, travel apps, productivity apps, and so on.

2. Interactive transaction-based applications These are applications that execute
on a remote computer and that are accessed by users from their own computers,
phones, or tablets. Obviously, these include web applications such as e-commerce
applications where you interact with a remote system to buy goods and services.
This class of application also includes business systems, where a business
provides access to its systems through a web browser or special-purpose client
program and cloud-based services, such as mail and photo sharing. Interactive
applications often incorporate a large data store that is accessed and updated in
each transaction.

3. Embedded control systems These are software control systems that control and
manage hardware devices. Numerically, there are probably more embedded sys-
tems than any other type of system. Examples of embedded systems include the
software in a mobile (cell) phone, software that controls antilock braking in a
car, and software in a microwave oven to control the cooking process.

4. Batch processing systems These are business systems that are designed to pro-
cess data in large batches. They process large numbers of individual inputs to
create corresponding outputs. Examples of batch systems are periodic billing
systems, such as phone billing systems, and salary payment systems.

5. Entertainment systems These are systems for personal use that are intended to
entertain the user. Most of these systems are games of one kind or another,
which may run on special-purpose console hardware. The quality of the user
interaction offered is the most important distinguishing characteristic of enter-
tainment systems.

6. Systems for modeling and simulation These are systems that are developed by
scientists and engineers to model physical processes or situations, which include
many separate, interacting objects. These are often computationally intensive
and require high-performance parallel systems for execution.

7. Data collection and analysis systems Data collection systems are systems that
collect data from their environment and send that data to other systems for pro-
cessing. The software may have to interact with sensors and often is installed in
a hostile environment such as inside an engine or in a remote location. “Big
data” analysis may involve cloud-based systems carrying out statistical analysis
and looking for relationships in the collected data.

8. Systems of systems These are systems, used in enterprises and other large organ-
izations, that are composed of a number of other software systems. Some of
these may be generic software products, such as an ERP system. Other systems
in the assembly may be specially written for that environment.

26    Chapter 1  ■  Introduction

Of course, the boundaries between these system types are blurred. If you develop
a game for a phone, you have to take into account the same constraints (power, hard-
ware interaction) as the developers of the phone software. Batch processing systems
are often used in conjunction with web-based transaction systems. For example, in a
company, travel expense claims may be submitted through a web application but
processed in a batch application for monthly payment.

Each type of system requires specialized software engineering techniques because
the software has different characteristics. For example, an embedded control system
in an automobile is safety-critical and is burned into ROM (read-only memory)
when installed in the vehicle. It is therefore very expensive to change. Such a system
needs extensive verification and validation so that the chances of having to recall
cars after sale to fix software problems are minimized. User interaction is minimal
(or perhaps nonexistent), so there is no need to use a development process that relies
on user interface prototyping.

For an interactive web-based system or app, iterative development and delivery is
the best approach, with the system being composed of reusable components.
However, such an approach may be impractical for a system of systems, where
detailed specifications of the system interactions have to be specified in advance so
that each system can be separately developed.

Nevertheless, there are software engineering fundamentals that apply to all types
of software systems:

1. They should be developed using a managed and understood development pro-
cess. The organization developing the software should plan the development
process and have clear ideas of what will be produced and when it will be com-
pleted. Of course, the specific process that you should use depends on the type
of software that you are developing.

2. Dependability and performance are important for all types of system. Software
should behave as expected, without failures, and should be available for use
when it is required. It should be safe in its operation and, as far as possible,
should be secure against external attack. The system should perform efficiently
and should not waste resources.

3. Understanding and managing the software specification and requirements (what
the software should do) are important. You have to know what different custom-
ers and users of the system expect from it, and you have to manage their expec-
tations so that a useful system can be delivered within budget and to schedule.

4. You should make effective use of existing resources. This means that, where
appropriate, you should reuse software that has already been developed rather
than write new software.

These fundamental notions of process, dependability, requirements, manage-
ment, and reuse are important themes of this book. Different methods reflect them in
different ways, but they underlie all professional software development.

  1.1  ■  Professional software development    27

These fundamentals are independent of the program language used for software
development. I don’t cover specific programming techniques in this book because
these vary dramatically from one type of system to another. For example, a dynamic
language, such as Ruby, is the right type of language for interactive system develop-
ment but is inappropriate for embedded systems engineering.

	 1.1.3		 Internet	software	engineering

The development of the Internet and the World Wide Web has had a profound
effect on all of our lives. Initially, the web was primarily a universally accessible
information store, and it had little effect on software systems. These systems ran
on local computers and were only accessible from within an organization. Around
2000, the web started to evolve, and more and more functionality was added to
browsers. This meant that web-based systems could be developed where, instead
of a special-purpose user interface, these systems could be accessed using a web
browser. This led to the development of a vast range of new system products that
delivered innovative services, accessed over the web. These are often funded by
adverts that are displayed on the user’s screen and do not involve direct payment
from users.

As well as these system products, the development of web browsers that could
run small programs and do some local processing led to an evolution in business and
organizational software. Instead of writing software and deploying it on users’ PCs,
the software was deployed on a web server. This made it much cheaper to change
and upgrade the software, as there was no need to install the software on every PC.
It also reduced costs, as user interface development is particularly expensive.
Wherever it has been possible to do so, businesses have moved to web-based inter-
action with company software systems.

The notion of software as a service (Chapter 17) was proposed early in the 21st
century This has now become the standard approach to the delivery of web-based
system products such as Google Apps, Microsoft Office 365, and Adobe Creative
Suite. More and more software runs on remote “clouds” instead of local servers and
is accessed over the Internet. A computing cloud is a huge number of linked com-
puter systems that is shared by many users. Users do not buy software but pay
according to how much the software is used or are given free access in return for
watching adverts that are displayed on their screen. If you use services such as web-
based mail, storage, or video, you are using a cloud-based system.

The advent of the web has led to a dramatic change in the way that business soft-
ware is organized. Before the web, business applications were mostly monolithic,
single programs running on single computers or computer clusters. Communications
were local, within an organization. Now, software is highly distributed, sometimes
across the world. Business applications are not programmed from scratch but involve
extensive reuse of components and programs.

This change in software organization has had a major effect on software engi-
neering for web-based systems. For example:

28    Chapter 1  ■  Introduction

1. Software reuse has become the dominant approach for constructing web-based
systems. When building these systems, you think about how you can assemble
them from preexisting software components and systems, often bundled together
in a framework.

2. It is now generally recognized that it is impractical to specify all the require-
ments for such systems in advance. Web-based systems are always developed
and delivered incrementally.

3. Software may be implemented using service-oriented software engineering,
where the software components are stand-alone web services. I discuss this
approach to software engineering in Chapter 18.

4. Interface development technology such as AJAX (Holdener 2008) and HTML5
(Freeman 2011) have emerged that support the creation of rich interfaces within
a web browser.

The fundamental ideas of software engineering, discussed in the previous section,
apply to web-based software, as they do to other types of software. Web-based sys-
tems are getting larger and larger, so software engineering techniques that deal with
scale and complexity are relevant for these systems.

	 1.2		 Software	engineering	ethics

Like other engineering disciplines, software engineering is carried out within a
social and legal framework that limits the freedom of people working in that area. As
a software engineer, you must accept that your job involves wider responsibilities
than simply the application of technical skills. You must also behave in an ethical
and morally responsible way if you are to be respected as a professional engineer.

It goes without saying that you should uphold normal standards of honesty and
integrity. You should not use your skills and abilities to behave in a dishonest way or
in a way that will bring disrepute to the software engineering profession. However,
there are areas where standards of acceptable behavior are not bound by laws but by
the more tenuous notion of professional responsibility. Some of these are:

1. Confidentiality You should normally respect the confidentiality of your employ-
ers or clients regardless of whether or not a formal confidentiality agreement
has been signed.

2. Competence You should not misrepresent your level of competence. You should
not knowingly accept work that is outside your competence.

3. Intellectual property rights You should be aware of local laws governing the
use of intellectual property such as patents and copyright. You should be careful
to ensure that the intellectual property of employers and clients is protected.

  1.2  ■  Software engineering ethics    29

4. Computer misuse You should not use your technical skills to misuse other peo-
ple’s computers. Computer misuse ranges from relatively trivial (game playing
on an employer’s machine) to extremely serious (dissemination of viruses or
other malware).

Professional societies and institutions have an important role to play in setting
ethical standards. Organizations such as the ACM, the IEEE (Institute of Electrical
and Electronic Engineers), and the British Computer Society publish a code of pro-
fessional conduct or code of ethics. Members of these organizations undertake to
follow that code when they sign up for membership. These codes of conduct are
generally concerned with fundamental ethical behavior.

Professional associations, notably the ACM and the IEEE, have cooperated to
produce a joint code of ethics and professional practice. This code exists in both a
short form, shown in Figure 1.3, and a longer form (Gotterbarn, Miller, and Rogerson
1999) that adds detail and substance to the shorter version. The rationale behind this
code is summarized in the first two paragraphs of the longer form:

Figure 1.3 The ACM/
IEEE Code of Ethics

Software Engineering Code of Ethics and Professional Practice

ACM/IEEE-CS Joint Task Force on Software Engineering Ethics and Professional Practices

PREAMBLE
The short version of the code summarizes aspirations at a high level of the abstraction; the clauses that are
included in the full version give examples and details of how these aspirations change the way we act as soft-
ware engineering professionals. Without the aspirations, the details can become legalistic and tedious; without
the details, the aspirations can become high sounding but empty; together, the aspirations and the details form
a cohesive code.

Software engineers shall commit themselves to making the analysis, specification, design, development, test-
ing, and maintenance of software a beneficial and respected profession. In accordance with their commitment
to the health, safety, and welfare of the public, software engineers shall adhere to the following Eight Principles:

1. PUBLIC — Software engineers shall act consistently with the public interest.
2. CLIENT AND EMPLOYER — Software engineers shall act in a manner that is in the

best interests of their client and employer consistent with the public interest.
3. PRODUCT — Software engineers shall ensure that their products and related

modifications meet the highest professional standards possible.
4. JUDGMENT — Software engineers shall maintain integrity and independence in their

professional judgment.
5. MANAGEMENT — Software engineering managers and leaders shall subscribe to and

promote an ethical approach to the management of software development and
maintenance.

6. PROFESSION — Software engineers shall advance the integrity and reputation of
the profession consistent with the public interest.

7. COLLEAGUES — Software engineers shall be fair to and supportive of their
colleagues.

8. SELF — Software engineers shall participate in lifelong learning regarding
the practice of their profession and shall promote an ethical approach to the
practice of the profession.

(ACM/IEEE-CS Joint
Task Force on Software
Engineering Ethics and
Professional Practices,
short version. http://
www.acm.org/about/
se-code)

(© 1999 by the ACM,
Inc. and the IEEE, Inc.)

30    Chapter 1  ■  Introduction

Computers have a central and growing role in commerce, industry, government,
medicine, education, entertainment and society at large. Software engineers are
those who contribute by direct participation or by teaching, to the analysis, spec-
ification, design, development, certification, maintenance and testing of software
systems. Because of their roles in developing software systems, software engi-
neers have significant opportunities to do good or cause harm, to enable others to
do good or cause harm, or to influence others to do good or cause harm. To
ensure, as much as possible, that their efforts will be used for good, software
engineers must commit themselves to making software engineering a beneficial
and respected profession. In accordance with that commitment, software engi-
neers shall adhere to the following Code of Ethics and Professional Practice†.

The Code contains eight Principles related to the behaviour of and decisions
made by professional software engineers, including practitioners, educators,
managers, supervisors and policy makers, as well as trainees and students of
the profession. The Principles identify the ethically responsible relationships
in which individuals, groups, and organizations participate and the primary
obligations within these relationships. The Clauses of each Principle are illus-
trations of some of the obligations included in these relationships. These obli-
gations are founded in the software engineer’s humanity, in special care owed
to people affected by the work of software engineers, and the unique elements
of the practice of software engineering. The Code prescribes these as obliga-
tions of anyone claiming to be or aspiring to be a software engineer†.

In any situation where different people have different views and objectives, you are
likely to be faced with ethical dilemmas. For example, if you disagree, in principle, with
the policies of more senior management in the company, how should you react? Clearly,
this depends on the people involved and the nature of the disagreement. Is it best to argue
a case for your position from within the organization or to resign in principle? If you feel
that there are problems with a software project, when do you reveal these problems to
management? If you discuss these while they are just a suspicion, you may be overreact-
ing to a situation; if you leave it too long, it may be impossible to resolve the difficulties.

We all face such ethical dilemmas in our professional lives, and, fortunately, in
most cases they are either relatively minor or can be resolved without too much dif-
ficulty. Where they cannot be resolved, the engineer is faced with, perhaps, another
problem. The principled action may be to resign from their job, but this may well
affect others such as their partner or their children.

A difficult situation for professional engineers arises when their employer acts in
an unethical way. Say a company is responsible for developing a safety-critical
system and, because of time pressure, falsifies the safety validation records. Is the
engineer’s responsibility to maintain confidentiality or to alert the customer or
publicize, in some way, that the delivered system may be unsafe?

†ACM/IEEE-CS Joint Task Force on Software Engineering Ethics and Professional Practices, short
version Preamble. http://www.acm.org/about/se-code Copyright © 1999 by the Association for
Computing Machinery, Inc. and the Institute for Electrical and Electronics Engineers, Inc.

  1.3  ■  Case studies    31

The problem here is that there are no absolutes when it comes to safety. Although
the system may not have been validated according to predefined criteria, these
 criteria may be too strict. The system may actually operate safely throughout its life-
time. It is also the case that, even when properly validated, the system may fail and
cause an accident. Early disclosure of problems may result in damage to the employer
and other employees; failure to disclose problems may result in damage to others.

You must make up your own mind in these matters. The appropriate ethical posi-
tion here depends on the views of the people involved. The potential for damage, the
extent of the damage, and the people affected by the damage should influence the
decision. If the situation is very dangerous, it may be justified to publicize it using
the national press or social media. However, you should always try to resolve the
situation while respecting the rights of your employer.

Another ethical issue is participation in the development of military and nuclear
systems. Some people feel strongly about these issues and do not wish to participate in
any systems development associated with defense systems. Others will work on mili-
tary systems but not on weapons systems. Yet others feel that national security is an
overriding principle and have no ethical objections to working on weapons systems.

In this situation, it is important that both employers and employees should make
their views known to each other in advance. Where an organization is involved in
military or nuclear work, it should be able to specify that employees must be willing
to accept any work assignment. Equally, if an employee is taken on and makes clear
that he or she does not wish to work on such systems, employers should not exert
pressure to do so at some later date.

The general area of ethics and professional responsibility is increasingly important
as software-intensive systems pervade every aspect of work and everyday life. It can
be considered from a philosophical standpoint where the basic principles of ethics are
considered and software engineering ethics are discussed with reference to these
basic principles. This is the approach taken by Laudon (Laudon 1995) and Johnson
(Johnson 2001). More recent texts such as that by Tavani (Tavani 2013) introduce the
notion of cyberethics and cover both the philosophical background and practical and
legal issues. They include ethical issues for technology users as well as developers.

I find that a philosophical approach is too abstract and difficult to relate to every-
day experience so I prefer the more concrete approach embodied in professional
codes of conduct (Bott 2005; Duquenoy 2007). I think that ethics are best discussed
in a software engineering context and not as a subject in its own right. Therefore, I
do not discuss software engineering ethics in an abstract way but include examples
in the exercises that can be the starting point for a group discussion.

	 1.3	 Case	studies

To illustrate software engineering concepts, I use examples from four different types
of system. I have deliberately not used a single case study, as one of the key messages
in this book is that software engineering practice depends on the type of systems

32    Chapter 1  ■  Introduction

being produced. I therefore choose an appropriate example when discussing con-
cepts such as safety and dependability, system modeling, reuse, etc.

The system types that I use as case studies are:

1. An embedded system This is a system where the software controls some hard-
ware device and is embedded in that device. Issues in embedded systems typi-
cally include physical size, responsiveness, and power management, etc. The
example of an embedded system that I use is a software system to control an
insulin pump for people who have diabetes.

2. An information system The primary purpose of this type of system is to manage
and provide access to a database of information. Issues in information systems
include security, usability, privacy, and maintaining data integrity. The example
of an information system used is a medical records system.

3. A sensor-based data collection system This is a system whose primary purposes
are to collect data from a set of sensors and to process that data in some way.
The key requirements of such systems are reliability, even in hostile environ-
mental conditions, and maintainability. The example of a data collection system
that I use is a wilderness weather station.

4. A support environment. This is an integrated collection of software tools that are
used to support some kind of activity. Programming environments, such as
Eclipse (Vogel 2012) will be the most familiar type of environment for readers
of this book. I describe an example here of a digital learning environment that
is used to support students’ learning in schools.

I introduce each of these systems in this chapter; more information about each of
them is available on the website (software-engineering-book.com).

	 1.3.1		 An	insulin	pump	control	system

An insulin pump is a medical system that simulates the operation of the pancreas (an
internal organ). The software controlling this system is an embedded system that
collects information from a sensor and controls a pump that delivers a controlled
dose of insulin to a user.

People who suffer from diabetes use the system. Diabetes is a relatively common
condition in which the human pancreas is unable to produce sufficient quantities of
a hormone called insulin. Insulin metabolizes glucose (sugar) in the blood. The con-
ventional treatment of diabetes involves regular injections of genetically engineered
insulin. Diabetics measure their blood sugar levels periodically using an external
meter and then estimate the dose of insulin they should inject.

The problem is that the level of insulin required does not just depend on the blood
glucose level but also on the time of the last insulin injection. Irregular checking can
lead to very low levels of blood glucose (if there is too much insulin) or very high
levels of blood sugar (if there is too little insulin). Low blood glucose is, in the short
term, a more serious condition as it can result in temporary brain malfunctioning and,

  1.3  ■  Case studies    33

ultimately, unconsciousness and death. In the long term, however, continual high
levels of blood glucose can lead to eye damage, kidney damage, and heart problems.

Advances in developing miniaturized sensors have meant that it is now possible
to develop automated insulin delivery systems. These systems monitor blood sugar
levels and deliver an appropriate dose of insulin when required. Insulin delivery
systems like this one are now available and are used by patients who find it difficult
to control their insulin levels. In future, it may be possible for diabetics to have such
systems permanently attached to their bodies.

A software-controlled insulin delivery system uses a microsensor embedded in
the patient to measure some blood parameter that is proportional to the sugar level.
This is then sent to the pump controller. This controller computes the sugar level and
the amount of insulin that is needed. It then sends signals to a miniaturized pump to
deliver the insulin via a permanently attached needle.

Figure 1.4 shows the hardware components and organization of the insulin pump.
To understand the examples in this book, all you need to know is that the blood sensor
measures the electrical conductivity of the blood under different conditions and that
these values can be related to the blood sugar level. The insulin pump delivers one unit
of insulin in response to a single pulse from a controller. Therefore, to deliver 10 units
of insulin, the controller sends 10 pulses to the pump. Figure 1.5 is a Unified Modeling

Needle
assembly

Sensor

Display1 Display2

Alarm

Pump Clock

Controller

Power supply

Insulin reservoir

Figure 1.4 Insulin pump
hardware architecture

Analyze sensor
reading

Blood
sensor

Insulin
pump

Blood
sugar

Compute
insulin

Insulin
dose

Insulin
log

Log doseCompute pump
commands

Pump
data

Control insulin
pump

Figure 1.5 Activity
model of the
insulin pump

34    Chapter 1  ■  Introduction

Language (UML) activity model that illustrates how the software transforms an input
blood sugar level to a sequence of commands that drive the insulin pump.

Clearly, this is a safety-critical system. If the pump fails to operate or does not
operate correctly, then the user’s health may be damaged or they may fall into a
coma because their blood sugar levels are too high or too low. This system must
therefore meet two essential high-level requirements:

1. The system shall be available to deliver insulin when required.

2. The system shall perform reliably and deliver the correct amount of insulin to
counteract the current level of blood sugar.

The system must therefore be designed and implemented to ensure that it always
meets these requirements. More detailed requirements and discussions of how to
ensure that the system is safe are discussed in later chapters.

	 1.3.2		 A	patient	information	system	for	mental	health	care

A patient information system to support mental health care (the Mentcare system) is a
medical information system that maintains information about patients suffering from
mental health problems and the treatments that they have received. Most mental
health patients do not require dedicated hospital treatment but need to attend special-
ist clinics regularly where they can meet a doctor who has detailed knowledge of their
problems. To make it easier for patients to attend, these clinics are not just run in
hospitals. They may also be held in local medical practices or community centers.

The Mentcare system (Figure 1.6) is a patient information system that is intended
for use in clinics. It makes use of a centralized database of patient information but

Mentcare
client

Mentcare server

Patient database

Mentcare
client

Mentcare
client

Network

Figure 1.6 The
organization of the
Mentcare system

  1.3  ■  Case studies    35

has also been designed to run on a laptop, so that it may be accessed and used from
sites that do not have secure network connectivity. When the local systems have
secure network access, they use patient information in the database, but they can
download and use local copies of patient records when they are disconnected. The
system is not a complete medical records system and so does not maintain informa-
tion about other medical conditions. However, it may interact and exchange data
with other clinical information systems.

This system has two purposes:

1. To generate management information that allows health service managers to
assess performance against local and government targets.

2. To provide medical staff with timely information to support the treatment of
patients.

Patients who suffer from mental health problems are sometimes irrational and
disorganized so may miss appointments, deliberately or accidentally lose prescriptions
and medication, forget instructions and make unreasonable demands on medical
staff. They may drop in on clinics unexpectedly. In a minority of cases, they may be
a danger to themselves or to other people. They may regularly change address or
may be homeless on a long-term or short-term basis. Where patients are dangerous,
they may need to be “sectioned”—that is, confined to a secure hospital for treatment
and observation.

Users of the system include clinical staff such as doctors, nurses, and health visi-
tors (nurses who visit people at home to check on their treatment). Nonmedical users
include receptionists who make appointments, medical records staff who maintain
the records system, and administrative staff who generate reports.

The system is used to record information about patients (name, address, age, next
of kin, etc.), consultations (date, doctor seen, subjective impressions of the patient,
etc.), conditions, and treatments. Reports are generated at regular intervals for medi-
cal staff and health authority managers. Typically, reports for medical staff focus on
information about individual patients, whereas management reports are anonymized
and are concerned with conditions, costs of treatment, etc.

The key features of the system are:

1. Individual care management Clinicians can create records for patients, edit the
information in the system, view patient history, and so on. The system supports
data summaries so that doctors who have not previously met a patient can
quickly learn about the key problems and treatments that have been prescribed.

2. Patient monitoring The system regularly monitors the records of patients that
are involved in treatment and issues warnings if possible problems are detected.
Therefore, if a patient has not seen a doctor for some time, a warning may be
issued. One of the most important elements of the monitoring system is to keep
track of patients who have been sectioned and to ensure that the legally required
checks are carried out at the right time.

36    Chapter 1  ■  Introduction

3. Administrative reporting The system generates monthly management reports
showing the number of patients treated at each clinic, the number of patients
who have entered and left the care system, the number of patients sectioned, the
drugs prescribed and their costs, etc.

Two different laws affect the system: laws on data protection that govern the con-
fidentiality of personal information and mental health laws that govern the compul-
sory detention of patients deemed to be a danger to themselves or others. Mental
health is unique in this respect as it is the only medical speciality that can recommend
the detention of patients against their will. This is subject to strict legislative safe-
guards. One aim of the Mentcare system is to ensure that staff always act in accord-
ance with the law and that their decisions are recorded for judicial review if necessary.

As in all medical systems, privacy is a critical system requirement. It is essential
that patient information is confidential and is never disclosed to anyone apart from
authorized medical staff and the patient themselves. The Mentcare system is also a
safety-critical system. Some mental illnesses cause patients to become suicidal or a
danger to other people. Wherever possible, the system should warn medical staff
about potentially suicidal or dangerous patients.

The overall design of the system has to take into account privacy and safety
requirements. The system must be available when needed; otherwise safety may be
compromised, and it may be impossible to prescribe the correct medication to patients.
There is a potential conflict here. Privacy is easiest to maintain when there is only a
single copy of the system data. However, to ensure availability in the event of server
failure or when disconnected from a network, multiple copies of the data should be
maintained. I discuss the trade-offs between these requirements in later chapters.

	 1.3.3		 A	wilderness	weather	station

To help monitor climate change and to improve the accuracy of weather forecasts in
remote areas, the government of a country with large areas of wilderness decides to
deploy several hundred weather stations in remote areas. These weather stations col-
lect data from a set of instruments that measure temperature and pressure, sunshine,
rainfall, wind speed and wind direction.

Wilderness weather stations are part of a larger system (Figure 1.7), which is a
weather information system that collects data from weather stations and makes it
available to other systems for processing. The systems in Figure 1.7 are:

1. The weather station system This system is responsible for collecting weather
data, carrying out some initial data processing, and transmitting it to the data
management system.

2. The data management and archiving system This system collects the data from
all of the wilderness weather stations, carries out data processing and analysis,
and archives the data in a form that can be retrieved by other systems, such as
weather forecasting systems.

  1.3  ■  Case studies    37

3. The station maintenance system This system can communicate by satellite with
all wilderness weather stations to monitor the health of these systems and pro-
vide reports of problems. It can update the embedded software in these systems.
In the event of system problems, this system can also be used to remotely con-
trol the weather station.

In Figure 1.7, I have used the UML package symbol to indicate that each system is
a collection of components and the separate systems are identified using the UML
 stereotype «system». The associations between the packages indicate there is an exchange
of information but, at this stage, there is no need to define them in any more detail.

The weather stations include instruments that measure weather parameters such
as wind speed and direction, ground and air temperatures, barometric pressure, and
rainfall over a 24-hour period. Each of these instruments is controlled by a software
system that takes parameter readings periodically and manages the data collected
from the instruments.

The weather station system operates by collecting weather observations at fre-
quent intervals; for example, temperatures are measured every minute. However,
because the bandwidth to the satellite is relatively narrow, the weather station carries
out some local processing and aggregation of the data. It then transmits this aggre-
gated data when requested by the data collection system. If it is impossible to make
a connection, then the weather station maintains the data locally until communica-
tion can be resumed.

Each weather station is battery-powered and must be entirely self-contained; there
are no external power or network cables. All communications are through a relatively
slow satellite link, and the weather station must include some mechanism (solar or
wind power) to charge its batteries. As they are deployed in wilderness areas, they are
exposed to severe environmental conditions and may be damaged by animals. The
station software is therefore not just concerned with data collection. It must also:

1. Monitor the instruments, power. and communication hardware and report faults
to the management system.

2. Manage the system power, ensuring that batteries are charged whenever the
environmental conditions permit but also that generators are shut down in
potentially damaging weather conditions, such as high wind.

«system»
Data management

and archiving

«system»
Station maintenance

«system»
Weather station

Figure 1.7 The weather
station’s environment

38    Chapter 1  ■  Introduction

3. Allow for dynamic reconfiguration where parts of the software are replaced
with new versions and where backup instruments are switched into the system
in the event of system failure.

Because weather stations have to be self-contained and unattended, this means
that the software installed is complex, even though the data collection functionality
is fairly simple.

	 1.3.4		 A	digital	learning	environment	for	schools

Many teachers argue that using interactive software systems to support education
can lead to both improved learner motivation and a deeper level of knowledge and
understanding in students. However, there is no general agreement on the ‘best’
strategy for computer-supported learning, and teachers in practice use a range of dif-
ferent interactive, web-based tools to support learning. The tools used depend on the
ages of the learners, their cultural background, their experience with computers,
equipment available, and the preferences of the teachers involved.

A digital learning environment is a framework in which a set of general-purpose
and specially designed tools for learning may be embedded, plus a set of applica-
tions that are geared to the needs of the learners using the system. The framework
provides general services such as an authentication service, synchronous and asyn-
chronous communication services, and a storage service.

The tools included in each version of the environment are chosen by teachers and
learners to suit their specific needs. These can be general applications such as spread-
sheets, learning management applications such as a Virtual Learning Environment
(VLE) to manage homework submission and assessment, games, and simulations.
They may also include specific content, such as content about the American Civil
War and applications to view and annotate that content.

Figure 1.8 is a high-level architectural model of a digital learning environment
(iLearn) that was designed for use in schools for students from 3 to 18 years of
age. The approach adopted is that this is a distributed system in which all compo-
nents of the environment are services that can be accessed from anywhere on the
Internet. There is no requirement that all of the learning tools are gathered together
in one place.

The system is a service-oriented system with all system components considered
to be a replaceable service. There are three types of service in the system:

1. Utility services that provide basic application-independent functionality and
that may be used by other services in the system. Utility services are usually
developed or adapted specifically for this system.

2. Application services that provide specific applications such as email, conferencing,
photo sharing, etc., and access to specific educational content such as scientific
films or historical resources. Application services are external services that are
either specifically purchased for the system or are available freely over the Internet.

  1.3  ■  Case studies    39

3. Configuration services that are used to adapt the environment with a specific set
of application services and to define how services are shared between students,
teachers, and their parents.

The environment has been designed so that services can be replaced as new ser-
vices become available and to provide different versions of the system that are suited
for the age of the users. This means that the system has to support two levels of ser-
vice integration:

1. Integrated services are services that offer an API (application programming
interface) and that can be accessed by other services through that API. Direct
service-to-service communication is therefore possible. An authentication ser-
vice is an example of an integrated service. Rather than use their own authenti-
cation mechanisms, an authentication service may be called on by other services
to authenticate users. If users are already authenticated, then the authentication
service may pass authentication information directly to another service, via an
API, with no need for users to reauthenticate themselves.

2. Independent services are services that are simply accessed through a browser
interface and that operate independently of other services. Information can only
be shared with other services through explicit user actions such as copy and
paste; reauthentication may be required for each independent service.

If an independent service becomes widely used, the development team may then
integrate that service so that it becomes an integrated and supported service.

Authentication

Browser-based user interface

Configuration services

Group
management

Application
management

Identity
management

User storage

Logging and monitoring

Application storage

Interfacing

Search

Utility services

Application services

iLearn app

Email Messaging Video conferencing Newspaper archive

Word processing Simulation Video storage Resource finder

Spreadsheet Virtual learning environment History archive

Figure 1.8 The
architecture of a
digital learning
environment (iLearn)

40    Chapter 1  ■  Introduction

F u r t h e r 	 r e a d i n g

“Software Engineering Code of Ethics Is Approved.” An article that discusses the background to the
development of the ACM/IEEE Code of Ethics and that includes both the short and long form of the
code. (Comm. ACM, D. Gotterbarn, K. Miller, and S. Rogerson, October 1999). http://dx.doi.
org/10.1109/MC.1999.796142

“A View of 20th and 21st Century Software Engineering.” A backward and forward look at software
engineering from one of the first and most distinguished software engineers. Barry Boehm identifies
timeless software engineering principles but also suggests that some commonly used practices are
obsolete. (B. Boehm, Proc. 28th Software Engineering Conf., Shanghai. 2006). http://dx.doi.
org/10.1145/1134285.1134288

“Software Engineering Ethics.” Special issue of IEEE Computer, with several papers on the topic
(IEEE Computer, 42 (6), June 2009).

Ethics for the Information Age. This is a wide-ranging book that covers all aspects of information
technology (IT) ethics, not simply ethics for software engineers. I think this is the right approach
as you really need to understand software engineering ethics within a wider ethical framework
(M. J. Quinn, 2013, Addison-Wesley).

K e y P o i n t s

■ Software engineering is an engineering discipline that is concerned with all aspects of software
production.

■ Software is not just a program or programs but also includes all electronic documentation that
is needed by system users, quality assurance staff, and developers. Essential software product
attributes are maintainability, dependability and security, efficiency, and acceptability.

■ The software process includes all of the activities involved in software development. The high-level
activities of specification, development, validation, and evolution are part of all software processes.

■ There are many different types of system, and each requires appropriate software engineering
tools and techniques for their development. Few, if any, specific design and implementation
techniques are applicable to all kinds of system.

■ The fundamental ideas of software engineering are applicable to all types of software system.
These fundamentals include managed software processes, software dependability and security,
requirements engineering, and software reuse.

■ Software engineers have responsibilities to the engineering profession and society. They should
not simply be concerned with technical issues but should be aware of the ethical issues that
affect their work.

■ Professional societies publish codes of conduct that embed ethical and professional standards.
These set out the standards of behavior expected of their members.

  1.1  ■  Case studies    41  Chapter 1  ■  Exercises    41

The Essence of Software Engineering: Applying the SEMAT kernel. This book discusses the idea of a
universal framework that can underlie all software engineering methods. It can be adapted and
used for all types of systems and organizations. I am personally skeptical about whether or not a
universal approach is realistic in practice, but the book has some interesting ideas that are worth
exploring. (I. Jacobsen, P-W Ng, P. E. McMahon, I. Spence, and S. Lidman, 2013, Addison-Wesley)

W e b S i t e

PowerPoint slides for this chapter:

www.pearsonglobaleditions.com/Sommerville

Links to supporting videos:

http://software-engineering-book.com/videos/software-engineering/

Links to case study descriptions:

http://software-engineering-book.com/case-studies/

e x e r C i S e S

 1.1. Explain why professional software that is developed for a customer is not simply the
programs that have been developed and delivered.

 1.2. What is the most important difference between generic software product development and custom
software development? What might this mean in practice for users of generic software products?

 1.3. Briefly discuss why it is usually cheaper in the long run to use software engineering methods
and techniques for software systems.

 1.4. Software engineering is not only concerned with issues like system heterogeneity, business
and social change, trust, and security, but also with ethical issues affecting the domain. Give
some examples of ethical issues that have an impact on the software engineering domain.

 1.5. Based on your own knowledge of some of the application types discussed in Section 1.1.2,
explain, with examples, why different application types require specialized software
engineering techniques to support their design and development.

 1.6. Explain why the fundamental software engineering principles of process, dependability,
requirements management, and reuse are relevant to all types of software system.

 1.7. Explain how electronic connectivity between various development teams can support
software engineering activities.

 1.8. Noncertified individuals are still allowed to practice software engineering. Discuss some of the
possible drawbacks of this.

42    Chapter 1  ■  Introduction

 1.9. For each of the clauses in the ACM/IEEE Code of Ethics shown in Figure 1.4, propose an
appropriate example that illustrates that clause.

1.10. The “Drone Revolution” is currently being debated and discussed all over the world. Drones
are unmanned flying machines that are built and equipped with various kinds of software
systems that allow them to see, hear, and act. Discuss some of the societal challenges of
building such kinds of systems.

r e F e r e n C e S

Bott, F. 2005. Professional Issues in Information Technology. Swindon, UK: British Computer
Society.

Duquenoy, P. 2007. Ethical, Legal and Professional Issues in Computing. London: Thomson
Learning.

Freeman, A. 2011. The Definitive Guide to HTML5. New York: Apress.

Gotterbarn, D., K. Miller, and S. Rogerson. 1999. “Software Engineering Code of Ethics Is Approved.”
Comm. ACM 42 (10): 102–107. doi:10.1109/MC.1999.796142.

Holdener, A. T. 2008. Ajax: The Definitive Guide. Sebastopol, CA: O’Reilly and Associates.

Jacobson, I., P-W. Ng, P. E. McMahon, I. Spence, and S. Lidman. 2013. The Essence of Software
Engineering. Boston: Addison-Wesley.

Johnson, D. G. 2001. Computer Ethics. Englewood Cliffs, NJ: Prentice-Hall.

Laudon, K. 1995. “Ethical Concepts and Information Technology.” Comm. ACM 38 (12): 33–39.
doi:10.1145/219663.219677.

Naur, P., and Randell, B. 1969. Software Engineering: Report on a conference sponsored by the NATO
Science Committee. Brussels. http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.pdf

Tavani, H. T. 2013. Ethics and Technology: Controversies, Questions, and Strategies for Ethical
Computing, 4th ed. New York: John Wiley & Sons.

Vogel, L. 2012. Eclipse 4 Application Development: The Complete Guide to Eclipse 4 RCP
Development. Sebastopol, CA: O’Reilly & Associates.

Software processes
2

Objectives
The objective of this chapter is to introduce you to the idea of a software
process—a coherent set of activities for software production. When you
have read this chapter, you will:

■ understand the concepts of software processes and software
process models;

■ have been introduced to three general software process models and
when they might be used;

■ know about the fundamental process activities of software requirements
engineering, software development, testing, and evolution;

■ understand why processes should be organized to cope with changes
in the software requirements and design;

■ understand the notion of software process improvement and the
factors that affect software process quality.

Contents
2.1 Software process models

2.2 Process activities

2.3 Coping with change

2.4 Process improvement

44    Chapter 2  ■  Software processes

A software process is a set of related activities that leads to the production of a soft-
ware system. As I discussed in Chapter 1, there are many different types of software
systems, and there is no universal software engineering method that is applicable to
all of them. Consequently, there is no universally applicable software process. The
process used in different companies depends on the type of software being devel-
oped, the requirements of the software customer, and the skills of the people writing
the software.

However, although there are many different software processes, they all must
include, in some form, the four fundamental software engineering activities that I
introduced in Chapter 1:

1. Software specification The functionality of the software and constraints on its
operation must be defined.

2. Software development The software to meet the specification must be produced.

3. Software validation The software must be validated to ensure that it does what
the customer wants.

4. Software evolution The software must evolve to meet changing customer needs.

These activities are complex activities in themselves, and they include subactivi-
ties such as requirements validation, architectural design, and unit testing. Processes
also include other activities, such as software configuration management and project
planning that support production activities.

When we describe and discuss processes, we usually talk about the activities in
these processes, such as specifying a data model and designing a user interface, and
the ordering of these activities. We can all relate to what people do to develop soft-
ware. However, when describing processes, it is also important to describe who is
involved, what is produced, and conditions that influence the sequence of activities:

1. Products or deliverables are the outcomes of a process activity. For example, the
outcome of the activity of architectural design may be a model of the software
architecture.

2. Roles reflect the responsibilities of the people involved in the process. Examples
of roles are project manager, configuration manager, and programmer.

3. Pre- and postconditions are conditions that must hold before and after a process
activity has been enacted or a product produced. For example, before architec-
tural design begins, a precondition may be that the consumer has approved all
requirements; after this activity is finished, a postcondition might be that the
UML models describing the architecture have been reviewed.

Software processes are complex and, like all intellectual and creative processes,
rely on people making decisions and judgments. As there is no universal process that
is right for all kinds of software, most software companies have developed their own

  2.1  ■  Software process models    45

development processes. Processes have evolved to take advantage of the capabilities
of the software developers in an organization and the characteristics of the systems
that are being developed. For safety-critical systems, a very structured development
process is required where detailed records are maintained. For business systems, with
rapidly changing requirements, a more flexible, agile process is likely to be better.

As I discussed in Chapter 1, professional Professional software development is a
managed activity, so planning is an inherent part of all processes. Plan-driven pro-
cesses are processes where all of the process activities are planned in advance and
progress is measured against this plan. In agile processes, which I discuss in Chapter 3,
planning is incremental and continual as the software is developed. It is therefore eas-
ier to change the process to reflect changing customer or product requirements. As
Boehm and Turner (Boehm and Turner 2004) explain, each approach is suitable for
different types of software. Generally, for large systems, you need to find a balance
between plan-driven and agile processes.

Although there is no universal software process, there is scope for process improve-
ment in many organizations. Processes may include outdated techniques or may not
take advantage of the best practice in industrial software engineering. Indeed, many
organizations still do not take advantage of software engineering methods in their
software development. They can improve their process by introducing techniques
such as UML modeling and test-driven development. I discuss software process
improvement briefly later in thischapter text and in more detail in web Chapter 26.

	 2.1		 Software	process	models

As I explained in Chapter 1, a software process model (sometimes called a Software
Development Life Cycle or SDLC model) is a simplified representation of a soft-
ware process. Each process model represents a process from a particular perspective
and thus only provides partial information about that process. For example, a pro-
cess activity model shows the activities and their sequence but may not show the
roles of the people involved in these activities. In this section, I introduce a number
of very general process models (sometimes called process paradigms) and present
these from an architectural perspective. That is, we see the framework of the process
but not the details of process activities.

These generic models are high-level, abstract descriptions of software processes
that can be used to explain different approaches to software development. You can
think of them as process frameworks that may be extended and adapted to create
more specific software engineering processes.

The general process models that I cover here are:

1. The waterfall model This takes the fundamental process activities of specifica-
tion, development, validation, and evolution and represents them as separate
process phases such as requirements specification, software design, implemen-
tation, and testing.

46    Chapter 2  ■  Software processes

2. Incremental development This approach interleaves the activities of specifica-
tion, development, and validation. The system is developed as a series of versions
(increments), with each version adding functionality to the previous version.

3. Integration and configuration This approach relies on the availability of reus-
able components or systems. The system development process focuses on
configuring these components for use in a new setting and integrating them
into a system.

As I have said, there is no universal process model that is right for all kinds of
software development. The right process depends on the customer and regulatory
requirements, the environment where the software will be used, and the type of soft-
ware being developed. For example, safety-critical software is usually developed
using a waterfall process as lots of analysis and documentation is required before
implementation begins. Software products are now always developed using an incre-
mental process model. Business systems are increasingly being developed by con-
figuring existing systems and integrating these to create a new system with the
functionality that is required.

The majority of practical software processes are based on a general model but
often incorporate features of other models. This is particularly true for large systems
engineering. For large systems, it makes sense to combine some of the best features
of all of the general processes. You need to have information about the essential
system requirements to design a software architecture to support these requirements.
You cannot develop this incrementally. Subsystems within a larger system may be
developed using different approaches. Parts of the system that are well understood
can be specified and developed using a waterfall-based process or may be bought in
as off-the-shelf systems for configuration. Other parts of the system, which are dif-
ficult to specify in advance, should always be developed using an incremental
approach. In both cases, software components are likely to be reused.

Various attempts have been made to develop “universal” process models that
draw on all of these general models. One of the best known of these universal models
is the Rational Unified Process (RUP) (Krutchen 2003), which was developed by
Rational, a U.S. software engineering company. The RUP is a flexible model that

The Rational Unified Process

The Rational Unified Process (RUP) brings together elements of all of the general process models discussed
here and supports prototyping and incremental delivery of software (Krutchen 2003). The RUP is normally
described from three perspectives: a dynamic perspective that shows the phases of the model in time, a static
perspective that shows process activities, and a practice perspective that suggests good practices to be used in
the process. Phases of the RUP are inception, where a business case for the system is established; elaboration,
where requirements and architecture are developed; construction where the software is implemented; and
transition, where the system is deployed.

http://software-engineering-book.com/web/rup/

  2.1  ■  Software process models    47

can be instantiated in different ways to create processes that resemble any of the
general process models discussed here. The RUP has been adopted by some large
software companies (notably IBM), but it has not gained widespread acceptance.

 2.1.1 The waterfall model

The first published model of the software development process was derived from
engineering process models used in large military systems engineering (Royce
1970). It presents the software development process as a number of stages, as shown
in Figure 2.1. Because of the cascade from one phase to another, this model is known
as the waterfall model or software life cycle. The waterfall model is an example of a
plan-driven process. In principle at least, you plan and schedule all of the process
activities before starting software development.

The stages of the waterfall model directly reflect the fundamental software devel-
opment activities:

1. Requirements analysis and definition The system’s services, constraints, and
goals are established by consultation with system users. They are then defined
in detail and serve as a system specification.

2. System and software design The systems design process allocates the require-
ments to either hardware or software systems. It establishes an overall system
architecture. Software design involves identifying and describing the funda-
mental software system abstractions and their relationships.

3. Implementation and unit testing During this stage, the software design is real-
ized as a set of programs or program units. Unit testing involves verifying that
each unit meets its specification.

Requirements
definition

System and
software design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenanceFigure 2.1 The

waterfall model

48    Chapter 2  ■  Software processes

4. Integration and system testing The individual program units or programs are
integrated and tested as a complete system to ensure that the software
requirements have been met. After testing, the software system is delivered
to the customer.

5. Operation and maintenance Normally, this is the longest life-cycle phase. The
system is installed and put into practical use. Maintenance involves correcting
errors that were not discovered in earlier stages of the life cycle, improving the
implementation of system units, and enhancing the system’s services as new
requirements are discovered.

In principle, the result of each phase in the waterfall model is one or more docu-
ments that are approved (“signed off”). The following phase should not start until
the previous phase has finished. For hardware development, where high manufactur-
ing costs are involved, this makes sense. However, for software development, these
stages overlap and feed information to each other. During design, problems with
requirements are identified; during coding design problems are found, and so on.
The software process, in practice, is never a simple linear model but involves feed-
back from one phase to another.

As new information emerges in a process stage, the documents produced at previ-
ous stages should be modified to reflect the required system changes. For example,
if it is discovered that a requirement is too expensive to implement, the requirements
document should be changed to remove that requirement. However, this requires
customer approval and delays the overall development process.

As a result, both customers and developers may prematurely freeze the software
specification so that no further changes are made to it. Unfortunately, this means that
problems are left for later resolution, ignored, or programmed around. Premature
freezing of requirements may mean that the system won’t do what the user wants. It
may also lead to badly structured systems as design problems are circumvented by
implementation tricks.

During the final life-cycle phase (operation and maintenance) the software is put
into use. Errors and omissions in the original software requirements are discovered.

Boehm’s spiral process model

Barry Boehm, one of the pioneers in software engineering, proposed an incremental process model that was
risk-driven. The process is represented as a spiral rather than a sequence of activities (Boehm 1988).

Each loop in the spiral represents a phase of the software process. Thus, the innermost loop might be con-
cerned with system feasibility, the next loop with requirements definition, the next loop with system design,
and so on. The spiral model combines change avoidance with change tolerance. It assumes that changes are
a result of project risks and includes explicit risk management activities to reduce these risks.

http://software-engineering-book.com/web/spiral-model/

Program and design errors emerge, and the need for new functionality is identified.
The system must therefore evolve to remain useful. Making these changes (software
maintenance) may involve repeating previous process stages.

In reality, software has to be flexible and accommodate change as it is being
developed. The need for early commitment and system rework when changes are
made means that the waterfall model is only appropriate for some types of system:

1. Embedded systems where the software has to interface with hardware systems.
Because of the inflexibility of hardware, it is not usually possible to delay deci-
sions on the software’s functionality until it is being implemented.

2. Critical systems where there is a need for extensive safety and security analysis
of the software specification and design. In these systems, the specification and
design documents must be complete so that this analysis is possible. Safety-
related problems in the specification and design are usually very expensive to
correct at the implementation stage.

3. Large software systems that are part of broader engineering systems developed
by several partner companies. The hardware in the systems may be developed
using a similar model, and companies find it easier to use a common model for
hardware and software. Furthermore, where several companies are involved,
complete specifications may be needed to allow for the independent develop-
ment of different subsystems.

The waterfall model is not the right process model in situations where informal
team communication is possible and software requirements change quickly. Iterative
development and agile methods are better for these systems.

An important variant of the waterfall model is formal system development, where
a mathematical model of a system specification is created. This model is then refined,
using mathematical transformations that preserve its consistency, into executable
code. Formal development processes, such as that based on the B method (Abrial
2005, 2010), are mostly used in the development of software systems that have strin-
gent safety, reliability, or security requirements. The formal approach simplifies the
production of a safety or security case. This demonstrates to customers or regulators
that the system actually meets its safety or security requirements. However, because
of the high costs of developing a formal specification, this development model is
rarely used except for critical systems engineering.

 2.1.2 Incremental development

Incremental development is based on the idea of developing an initial implementa-
tion, getting feedback from users and others, and evolving the software through
several versions until the required system has been developed (Figure 2.2).
Specification, development, and validation activities are interleaved rather than
 separate, with rapid feedback across activities.

  2.1  ■  Software process models    49

50    Chapter 2  ■  Software processes

Incremental development in some form is now the most common approach for
the development of application systems and software products. This approach can
be either plan-driven, agile or, more usually, a mixture of these approaches. In a
plan-driven approach, the system increments are identified in advance; if an agile
approach is adopted, the early increments are identified, but the development of
later increments depends on progress and customer priorities.

Incremental software development, which is a fundamental part of agile
development methods, is better than a waterfall approach for systems whose
requirements are likely to change during the development process. This is the
case for most business systems and software products. Incremental development
reflects the way that we solve problems. We rarely work out a complete prob-
lem solution in advance but move toward a solution in a series of steps, back-
tracking when we realize that we have made a mistake. By developing the
software incrementally, it is cheaper and easier to make changes in the software
as it is being developed.

Each increment or version of the system incorporates some of the functional-
ity that is needed by the customer. Generally, the early increments of the system
include the most important or most urgently required functionality. This means
that the customer or user can evaluate the system at a relatively early stage in
the development to see if it delivers what is required. If not, then only the cur-
rent increment has to be changed and, possibly, new functionality defined for
later increments.

Incremental development has three major advantages over the waterfall model:

1. The cost of implementing requirements changes is reduced. The amount of
analysis and documentation that has to be redone is significantly less than is
required with the waterfall model.

2. It is easier to get customer feedback on the development work that has been
done. Customers can comment on demonstrations of the software and see how

Concurrent
activities

Validation
Final

version

Development
Intermediate

versions

Specification
Initial

version

Outline
description

Figure 2.2 Incremental
development

much has been implemented. Customers find it difficult to judge progress from
software design documents.

3. Early delivery and deployment of useful software to the customer is possible,
even if all of the functionality has not been included. Customers are able to use
and gain value from the software earlier than is possible with a waterfall process.

From a management perspective, the incremental approach has two problems:

1. The process is not visible. Managers need regular deliverables to measure pro-
gress. If systems are developed quickly, it is not cost effective to produce docu-
ments that reflect every version of the system.

2. System structure tends to degrade as new increments are added. Regular change
leads to messy code as new functionality is added in whatever way is possible.
It becomes increasingly difficult and costly to add new features to a system. To
reduce structural degradation and general code messiness, agile methods sug-
gest that you should regularly refactor (improve and restructure) the software.

The problems of incremental development become particularly acute for large,
complex, long-lifetime systems, where different teams develop different parts of the
system. Large systems need a stable framework or architecture, and the responsi-
bilities of the different teams working on parts of the system need to be clearly
defined with respect to that architecture. This has to be planned in advance rather
than developed incrementally.

Incremental development does not mean that you have to deliver each increment
to the system customer. You can develop a system incrementally and expose it to
customers and other stakeholders for comment, without necessarily delivering it
and deploying it in the customer’s environment. Incremental delivery (covered in
Section 2.3.2) means that the software is used in real, operational processes, so user
feedback is likely to be realistic. However, providing feedback is not always possi-
ble as experimenting with new software can disrupt normal business processes.

Problems with incremental development

Although incremental development has many advantages, it is not problem free. The primary cause of the
difficulty is the fact that large organizations have bureaucratic procedures that have evolved over time and
there may be a mismatch between these procedures and a more informal iterative or agile process.

Sometimes these procedures are there for good reasons. For example, there may be procedures to ensure
that the software meets properly implements external regulations (e.g., in the United States, the Sarbanes
Oxley accounting regulations). Changing these procedures may not be possible, so process conflicts may
be unavoidable.

http://software-engineering-book.com/web/incremental-development /

  2.1  ■  Software process models    51

52    Chapter 2  ■  Software processes

 2.1.3 Integration and configuration

In the majority of software projects, there is some software reuse. This often happens
informally when people working on the project know of or search for code that is
similar to what is required. They look for these, modify them as needed, and integrate
them with the new code that they have developed.

This informal reuse takes place regardless of the development process that is
used. However, since 2000, software development processes that focus on the reuse
of existing software have become widely used. Reuse-oriented approaches rely on a
base of reusable software components and an integrating framework for the compo-
sition of these components.

Three types of software components are frequently reused:

1. Stand-alone application systems that are configured for use in a particular envi-
ronment. These systems are general-purpose systems that have many features,
but they have to be adapted for use in a specific application.

2. Collections of objects that are developed as a component or as a package to be
integrated with a component framework such as the Java Spring framework
(Wheeler and White 2013).

3. Web services that are developed according to service standards and that are
available for remote invocation over the Internet.

Figure 2.3 shows a general process model for reuse-based development, based on
integration and configuration. The stages in this process are:

1. Requirements specification The initial requirements for the system are pro-
posed. These do not have to be elaborated in detail but should include brief
descriptions of essential requirements and desirable system features.

2. Software discovery and evaluation Given an outline of the software require-
ments, a search is made for components and systems that provide the func-
tionality required. Candidate components and systems are evaluated to see if

Requirements
specification

Software
discovery

Software
evaluation

Requirements
refinement

Configure
application

system

Adapt
components

Integrate
system

Develop new
components

Application system
available

Components
availableFigure 2.3 Reuse-

oriented software
engineering

they meet the essential requirements and if they are generally suitable for
use in the system.

3. Requirements refinement During this stage, the requirements are refined using
information about the reusable components and applications that have been
discovered. The requirements are modified to reflect the available compo-
nents, and the system specification is re-defined. Where modifications are
impossible, the component analysis activity may be reentered to search for
alternative solutions.

4. Application system configuration If an off-the-shelf application system that
meets the requirements is available, it may then be configured for use to create
the new system.

5. Component adaptation and integration If there is no off-the-shelf system, indi-
vidual reusable components may be modified and new components developed.
These are then integrated to create the system.

Reuse-oriented software engineering, based around configuration and integra-
tion, has the obvious advantage of reducing the amount of software to be developed
and so reducing cost and risks. It usually also leads to faster delivery of the software.
However, requirements compromises are inevitable, and this may lead to a system

Software development tools

Software development tools are programs that are used to support software engineering process activities.
These tools include requirements management tools, design editors, refactoring support tools, compilers,
debuggers, bug trackers, and system building tools.

Software tools provide process support by automating some process activities and by providing information
about the software that is being developed. For example:

■ The development of graphical system models as part of the requirements specification or the software
design

■ The generation of code from these graphical models

■ The generation of user interfaces from a graphical interface description that is created interactively by the user

■ Program debugging through the provision of information about an executing program

■ The automated translation of programs written using an old version of a programming language to a more
recent version

Tools may be combined within a framework called an Interactive Development Environment or IDE. This
 provides a common set of facilities that tools can use so that it is easier for tools to communicate and operate
in an integrated way.

http://software-engineering-book.com/web/software-tools/

  2.1  ■  Software process models    53

54    Chapter 2  ■  Software processes

that does not meet the real needs of users. Furthermore, some control over the sys-
tem evolution is lost as new versions of the reusable components are not under the
control of the organization using them.

Software reuse is very important, and so several chapters in the third I have dedi-
cated several chapters in the 3rd part of the book to this topic. General issues of
software reuse are covered in Chapter 15, component-based software engineering in
Chapters 16 and 17, and service-oriented systems in Chapter 18.

	 2.2		 Process	activities

Real software processes are interleaved sequences of technical, collaborative, and
managerial activities with the overall goal of specifying, designing, implementing,
and testing a software system. Generally, processes are now tool-supported. This
means that software developers may use a range of software tools to help them, such
as requirements management systems, design model editors, program editors, auto-
mated testing tools, and debuggers.

The four basic process activities of specification, development, validation, and
evolution are organized differently in different development processes. In the water-
fall model, they are organized in sequence, whereas in incremental development
they are interleaved. How these activities are carried out depends on the type of
software being developed, the experience and competence of the developers, and the
type of organization developing the software.

 2.2.1 Software specification

Software specification or requirements engineering is the process of understanding
and defining what services are required from the system and identifying the con-
straints on the system’s operation and development. Requirements engineering is a
particularly critical stage of the software process, as mistakes made at this stage
inevitably lead to later problems in the system design and implementation.

Before the requirements engineering process starts, a company may carry out a
feasibility or marketing study to assess whether or not there is a need or a market for
the software and whether or not it is technically and financially realistic to develop
the software required. Feasibility studies are short-term, relatively cheap studies that
inform the decision of whether or not to go ahead with a more detailed analysis.

The requirements engineering process (Figure 2.4) aims to produce an agreed
requirements document that specifies a system satisfying stakeholder requirements.
Requirements are usually presented at two levels of detail. End-users and customers
need a high-level statement of the requirements; system developers need a more
detailed system specification.

There are three main activities in the requirements engineering process:

1. Requirements elicitation and analysis This is the process of deriving the system
requirements through observation of existing systems, discussions with poten-
tial users and procurers, task analysis, and so on. This may involve the develop-
ment of one or more system models and prototypes. These help you understand
the system to be specified.

2. Requirements specification Requirements specification is the activity of trans-
lating the information gathered during requirements analysis into a document
that defines a set of requirements. Two types of requirements may be included
in this document. User requirements are abstract statements of the system
requirements for the customer and end-user of the system; system requirements
are a more detailed description of the functionality to be provided.

3. Requirements validation This activity checks the requirements for realism,
consistency, and completeness. During this process, errors in the require-
ments document are inevitably discovered. It must then be modified to correct
these problems.

Requirements analysis continues during definition and specification, and new
requirements come to light throughout the process. Therefore, the activities of analy-
sis, definition, and specification are interleaved.

In agile methods, requirements specification is not a separate activity but is seen
as part of system development. Requirements are informally specified for each
increment of the system just before that increment is developed. Requirements are
specified according to user priorities. The elicitation of requirements comes from
users who are part of or work closely with the development team.

Requirements
elicitation and

analysis
Requirements
specification

Requirements
validation

System
descriptions

User and system
requirements

Requirements
document

Figure 2.4 The
requirements
engineering process

  2.2  ■  Process activities    55

56    Chapter 2  ■  Software processes

 2.2.2 Software design and implementation

The implementation stage of software development is the process of developing
an executable system for delivery to the customer. Sometimes this involves sepa-
rate activities of software design and programming. However, if an agile approach
to development is used, design and implementation are interleaved, with no for-
mal design documents produced during the process. Of course, the software is
still designed, but the design is recorded informally on whiteboards and program-
mer’s notebooks.

A software design is a description of the structure of the software to be imple-
mented, the data models and structures used by the system, the interfaces between
system components and, sometimes, the algorithms used. Designers do not arrive at
a finished design immediately but develop the design in stages. They add detail as
they develop their design, with constant backtracking to modify earlier designs.

Figure 2.5 is an abstract model of the design process showing the inputs to the
design process, process activities, and the process outputs. The design process activ-
ities are both interleaved and interdependent. New information about the design is
constantly being generated, and this affects previous design decisions. Design
rework is therefore inevitable.

Design inputs

Design outputs

Architectural
design

Interface
design

Database
design

Component
selection

and design

Design activities

Platform
information

Software
requirements

Data
descriptions

System
architecture

Interface
specification

Database
design

Component
descriptionsFigure 2.5 A general

model of the
design process

Most software interfaces with other software systems. These other systems
include the operating system, database, middleware, and other application systems.
These make up the “software platform,’ the environment in which the software will
execute. Information about this platform is an essential input to the design process,
as designers must decide how best to integrate it with its environment. If the system
is to process existing data, then the description of that data may be included in the
platform specification. Otherwise, the data description must be an input to the design
process so that the system data organization can be defined.

The activities in the design process vary, depending on the type of system being
developed. For example, real-time systems require an additional stage of timing design
but may not include a database, so there is no database design involved. Figure 2.5
shows four activities that may be part of the design process for information systems:

1. Architectural design, where you identify the overall structure of the system, the
principal components (sometimes called subsystems or modules), their relation-
ships, and how they are distributed.

2. Database design, where you design the system data structures and how these are
to be represented in a database. Again, the work here depends on whether an
existing database is to be reused or a new database is to be created.

3. Interface design, where you define the interfaces between system components.
This interface specification must be unambiguous. With a precise interface, a
component may be used by other components without them having to know
how it is implemented. Once interface specifications are agreed, the compo-
nents can be separately designed and developed.

4. Component selection and design, where you search for reusable components
and, if no suitable components are available, design new software components.
The design at this stage may be a simple component description with the imple-
mentation details left to the programmer. Alternatively, it may be a list of
changes to be made to a reusable component or a detailed design model
expressed in the UML. The design model may then be used to automatically
generate an implementation.

These activities lead to the design outputs, which are also shown in Figure 2.5.
For critical systems, the outputs of the design process are detailed design documents
setting out precise and accurate descriptions of the system. If a model-driven
approach is used (Chapter 5), the design outputs are design diagrams. Where agile
methods of development are used, the outputs of the design process may not be
separate specification documents but may be represented in the code of the program.

The development of a program to implement a system follows naturally from
system design. Although some classes of program, such as safety-critical systems,
are usually designed in detail before any implementation begins, it is more common
for design and program development to be interleaved. Software development tools
may be used to generate a skeleton program from a design. This includes code to

  2.2  ■  Process activities    57

58    Chapter 2  ■  Software processes

define and implement interfaces, and, in many cases, the developer need only add
details of the operation of each program component.

Programming is an individual activity, and there is no general process that is
usually followed. Some programmers start with components that they understand,
develop these, and then move on to less understood components. Others take the
opposite approach, leaving familiar components till last because they know how to
develop them. Some developers like to define data early in the process and then
use this to drive the program development; others leave data unspecified for as
long as possible.

Normally, programmers carry out some testing of the code they have developed.
This often reveals program defects (bugs) that must be removed from the program.
Finding and fixing program defects is called debugging. Defect testing and debug-
ging are different processes. Testing establishes the existence of defects. Debugging
is concerned with locating and correcting these defects.

When you are debugging, you have to generate hypotheses about the observa-
ble behavior of the program and then test these hypotheses in the hope of finding
the fault that caused the output anomaly. Testing the hypotheses may involve trac-
ing the program code manually. It may require new test cases to localize the prob-
lem. Interactive debugging tools, which show the intermediate values of program
variables and a trace of the statements executed, are usually used to support the
debugging process.

 2.2.3 Software validation

Software validation or, more generally, verification and validation (V & V) is
intended to show that a system both conforms to its specification and meets the
expectations of the system customer. Program testing, where the system is executed
using simulated test data, is the principal validation technique. Validation may also
involve checking processes, such as inspections and reviews, at each stage of the
software process from user requirements definition to program development.
However, most V & V time and effort is spent on program testing.

Except for small programs, systems should not be tested as a single, monolithic
unit. Figure 2.6 shows a three-stage testing process in which system components are
individually tested, then the integrated system is tested. For custom software, cus-
tomer testing involves testing the system with real customer data. For products that
are sold as applications, customer testing is sometimes called beta testing where
selected users try out and comment on the software.

System testing
Component

 testing
Customer

testing

Figure 2.6 Stages
of testing

The stages in the testing process are:

1. Component testing The components making up the system are tested by the people
developing the system. Each component is tested independently, without other
system components. Components may be simple entities such as functions or
object classes or may be coherent groupings of these entities. Test automation
tools, such as JUnit for Java, that can rerun tests when new versions of the
 component are created, are commonly used (Koskela 2013).

2. System testing System components are integrated to create a complete system.
This process is concerned with finding errors that result from unanticipated
interactions between components and component interface problems. It is also
concerned with showing that the system meets its functional and non-functional
requirements, and testing the emergent system properties. For large systems,
this may be a multistage process where components are integrated to form
 subsystems that are individually tested before these subsystems are integrated to
form the final system.

3. Customer testing This is the final stage in the testing process before the system
is accepted for operational use. The system is tested by the system customer (or
potential customer) rather than with simulated test data. For custom-built
 software, customer testing may reveal errors and omissions in the system
requirements definition, because the real data exercise the system in different
ways from the test data. Customer testing may also reveal requirements problems
where the system’s facilities do not really meet the users’ needs or the system
performance is unacceptable. For products, customer testing shows how well
the software product meets the customer’s needs.

Ideally, component defects are discovered early in the testing process, and inter-
face problems are found when the system is integrated. However, as defects are dis-
covered, the program must be debugged, and this may require other stages in the
testing process to be repeated. Errors in program components, say, may come to
light during system testing. The process is therefore an iterative one with informa-
tion being fed back from later stages to earlier parts of the process.

Normally, component testing is simply part of the normal development process.
Programmers make up their own test data and incrementally test the code as it is
developed. The programmer knows the component and is therefore the best person
to generate test cases.

If an incremental approach to development is used, each increment should be
tested as it is developed, with these tests based on the requirements for that incre-
ment. In test-driven development, which is a normal part of agile processes, tests are
developed along with the requirements before development starts. This helps the
testers and developers to understand the requirements and ensures that there are no
delays as test cases are created.

When a plan-driven software process is used (e.g., for critical systems develop-
ment), testing is driven by a set of test plans. An independent team of testers works

  2.2  ■  Process activities    59

60    Chapter 2  ■  Software processes

from these test plans, which have been developed from the system specification and
design. Figure 2.7 illustrates how test plans are the link between testing and develop-
ment activities. This is sometimes called the V-model of development (turn it on its
side to see the V). The V-model shows the software validation activities that corre-
spond to each stage of the waterfall process model.

When a system is to be marketed as a software product, a testing process called
beta testing is often used. Beta testing involves delivering a system to a number of
potential customers who agree to use that system. They report problems to the sys-
tem developers. This exposes the product to real use and detects errors that may not
have been anticipated by the product developers. After this feedback, the software
product may be modified and released for further beta testing or general sale.

 2.2.4 Software evolution

The flexibility of software is one of the main reasons why more and more software
is being incorporated into large, complex systems. Once a decision has been made to
manufacture hardware, it is very expensive to make changes to the hardware design.
However, changes can be made to software at any time during or after the system
development. Even extensive changes are still much cheaper than corresponding
changes to system hardware.

Historically, there has always been a split between the process of software
development and the process of software evolution (software maintenance). People
think of software development as a creative activity in which a software system is
developed from an initial concept through to a working system. However, they
sometimes think of software maintenance as dull and uninteresting. They think
that software maintenance is less interesting and challenging than original soft-
ware development.

This distinction between development and maintenance is increasingly irrelevant.
Very few software systems are completely new systems, and it makes much more

Requirements
specification

System
specification

Customer
test

System
integration test

Sub-system
integration test

System
design

Component
design

Service

Component
code and test

Customer
test plan

System
integration
test plan

Sub-system
integration
test plan

Figure 2.7 Testing
phases in a plan-driven
software process

sense to see development and maintenance as a continuum. Rather than two separate
processes, it is more realistic to think of software engineering as an evolutionary
process (Figure 2.8) where software is continually changed over its lifetime in
response to changing requirements and customer needs.

	 2.3		 Coping	with	change

Change is inevitable in all large software projects. The system requirements
change as businesses respond to external pressures, competition, and changed
management priorities. As new technologies become available, new approaches to
design and implementation become possible. Therefore whatever software pro-
cess model is used, it is essential that it can accommodate changes to the software
being developed.

Change adds to the costs of software development because it usually means
that work that has been completed has to be redone. This is called rework. For
example, if the relationships between the requirements in a system have been ana-
lyzed and new requirements are then identified, some or all of the requirements
analysis has to be repeated. It may then be necessary to redesign the system to
deliver the new requirements, change any programs that have been developed,
and retest the system.

Two related approaches may be used to reduce the costs of rework:

1. Change anticipation, where the software process includes activities that can
anticipate or predict possible changes before significant rework is required. For
example, a prototype system may be developed to show some key features of
the system to customers. They can experiment with the prototype and refine
their requirements before committing to high software production costs.

2. Change tolerance, where the process and software are designed so that changes
can be easily made to the system. This normally involves some form of incre-
mental development. Proposed changes may be implemented in increments that
have not yet been developed. If this is impossible, then only a single increment
(a small part of the system) may have to be altered to incorporate the change.

Assess existing
systems

Define system
requirements

Propose system
changes

Modify
systems

New
system

Existing
systemsFigure 2.8 Software

system evolution

  2.3  ■  Coping with change    61

62    Chapter 2  ■  Software processes

In this section, I discuss two ways of coping with change and changing system
requirements:

1. System prototyping, where a version of the system or part of the system is
developed quickly to check the customer’s requirements and the feasibility of
design decisions. This is a method of change anticipation as it allows users to
experiment with the system before delivery and so refine their requirements.
The number of requirements change proposals made after delivery is therefore
likely to be reduced.

2. Incremental delivery, where system increments are delivered to the customer
for comment and experimentation. This supports both change avoidance and
change tolerance. It avoids the premature commitment to requirements for the
whole system and allows changes to be incorporated into later increments at
relatively low cost.

The notion of refactoring, namely, improving the structure and organization of a
program, is also an important mechanism that supports change tolerance. I discuss
this in Chapter 3 (Agile methods).

 2.3.1 Prototyping

A prototype is an early version of a software system that is used to demonstrate con-
cepts, try out design options, and find out more about the problem and its possible
solutions. Rapid, iterative development of the prototype is essential so that costs are
controlled and system stakeholders can experiment with the prototype early in the
software process.

A software prototype can be used in a software development process to help
anticipate changes that may be required:

1. In the requirements engineering process, a prototype can help with the elicita-
tion and validation of system requirements.

2. In the system design process, a prototype can be used to explore software solu-
tions and in the development of a user interface for the system.

System prototypes allow potential users to see how well the system supports their
work. They may get new ideas for requirements and find areas of strength and weak-
ness in the software. They may then propose new system requirements. Furthermore,
as the prototype is developed, it may reveal errors and omissions in the system
requirements. A feature described in a specification may seem to be clear and useful.
However, when that function is combined with other functions, users often find that
their initial view was incorrect or incomplete. The system specification can then be
modified to reflect the changed understanding of the requirements.

A system prototype may be used while the system is being designed to carry out
design experiments to check the feasibility of a proposed design. For example, a
database design may be prototyped and tested to check that it supports efficient data
access for the most common user queries. Rapid prototyping with end-user involve-
ment is the only sensible way to develop user interfaces. Because of the dynamic
nature of user interfaces, textual descriptions and diagrams are not good enough for
expressing the user interface requirements and design.

A process model for prototype development is shown in Figure 2.9. The objec-
tives of prototyping should be made explicit from the start of the process. These
may be to develop the user interface, to develop a system to validate functional
system requirements, or to develop a system to demonstrate the application to man-
agers. The same prototype usually cannot meet all objectives. If the objectives are
left unstated, management or end-users may misunderstand the function of the pro-
totype. Consequently, they may not get the benefits that they expected from the
prototype development.

The next stage in the process is to decide what to put into and, perhaps more
importantly, what to leave out of the prototype system. To reduce prototyping costs
and accelerate the delivery schedule, you may leave some functionality out of the
prototype. You may decide to relax non-functional requirements such as response
time and memory utilization. Error handling and management may be ignored unless
the objective of the prototype is to establish a user interface. Standards of reliability
and program quality may be reduced.

The final stage of the process is prototype evaluation. Provision must be
made during this stage for user training, and the prototype objectives should
be used to derive a plan for evaluation. Potential users need time to become
comfortable with a new system and to settle into a normal pattern of usage. Once
they are using the system normally, they then discover requirements errors
and omissions. A general problem with prototyping is that users may not use the
prototype in the same way as they use the final system. Prototype testers may
not be typical of system users. There may not be enough time to train users
 during prototype evaluation. If the prototype is slow, the evaluators may adjust
their way of working and avoid those system features that have slow response
times. When provided with better response in the final system, they may use it in
a different way.

Establish
prototype
objectives

Define
prototype

functionality

Develop
prototype

Evaluate
prototype

Prototyping
plan

Outline
definition

Executable
prototype

Evaluation
reportFigure 2.9 Prototype

development

  2.3  ■  Coping with change    63

64    Chapter 2  ■  Software processes

 2.3.2 Incremental delivery

Incremental delivery (Figure 2.10) is an approach to software development where
some of the developed increments are delivered to the customer and deployed for
use in their working environment. In an incremental delivery process, customers
define which of the services are most important and which are least important to
them. A number of delivery increments are then defined, with each increment pro-
viding a subset of the system functionality. The allocation of services to increments
depends on the service priority, with the highest priority services implemented and
delivered first.

Once the system increments have been identified, the requirements for the
services to be delivered in the first increment are defined in detail and that incre-
ment is developed. During development, further requirements analysis for later
increments can take place, but requirements changes for the current increment
are not accepted.

Once an increment is completed and delivered, it is installed in the customer’s
normal working environment. They can experiment with the system, and this helps
them clarify their requirements for later system increments. As new increments are
completed, they are integrated with existing increments so that system functionality
improves with each delivered increment.

Incremental delivery has a number of advantages:

1. Customers can use the early increments as prototypes and gain experience that
informs their requirements for later system increments. Unlike prototypes,
these are part of the real system, so there is no relearning when the complete
system is available.

2. Customers do not have to wait until the entire system is delivered before they
can gain value from it. The first increment satisfies their most critical require-
ments, so they can use the software immediately.

3. The process maintains the benefits of incremental development in that it should
be relatively easy to incorporate changes into the system.

Design system
architecture

Define outline
 requirements

Assign requirements
 to increments

System
incomplete?

Final
system

Develop system
increment

Validate
increment

Integrate
increment

Validate
system

Deploy
increment

System
complete?

Figure 2.10
Incremental delivery

4. As the highest priority services are delivered first and later increments then inte-
grated, the most important system services receive the most testing. This means
that customers are less likely to encounter software failures in the most impor-
tant parts of the system.

However, there are problems with incremental delivery. In practice, it only works in
situations where a brand-new system is being introduced and the system evaluators are
given time to experiment with the new system. Key problems with this approach are:

1. Iterative delivery is problematic when the new system is intended to replace an
existing system. Users need all of the functionality of the old system and are
usually unwilling to experiment with an incomplete new system. It is often
impractical to use the old and the new systems alongside each other as they are
likely to have different databases and user interfaces.

2. Most systems require a set of basic facilities that are used by different parts of the
system. As requirements are not defined in detail until an increment is to be imple-
mented, it can be hard to identify common facilities that are needed by all increments.

3. The essence of iterative processes is that the specification is developed in con-
junction with the software. However, this conflicts with the procurement model
of many organizations, where the complete system specification is part of the
system development contract. In the incremental approach, there is no complete
system specification until the final increment is specified. This requires a new
form of contract, which large customers such as government agencies may find
difficult to accommodate.

For some types of systems, incremental development and delivery is not the best
approach. These are very large systems where development may involve teams working
in different locations, some embedded systems where the software depends on hardware
development, and some critical systems where all the requirements must be analyzed to
check for interactions that may compromise the safety or security of the system.

These large systems, of course, suffer from the same problems of uncertain and
changing requirements. Therefore, to address these problems and get some of the
benefits of incremental development, a system prototype may be developed and used
as a platform for experiments with the system requirements and design. With the
experience gained from the prototype, definitive requirements can then be agreed.

	 2.4		 Process	improvement

Nowadays, there is a constant demand from industry for cheaper, better software,
which has to be delivered to ever-tighter deadlines. Consequently, many software
companies have turned to software process improvement as a way of enhancing the

  2.4  ■  Process improvement    65

66    Chapter 2  ■  Software processes

quality of their software, reducing costs, or accelerating their development pro-
cesses. Process improvement means understanding existing processes and changing
these processes to increase product quality and/or reduce costs and development
time. I cover general issues of process measurement and process improvement in
detail in web Chapter 26.

Two quite different approaches to process improvement and change are used:

1. The process maturity approach, which has focused on improving process and
project management and introducing good software engineering practice into an
organization. The level of process maturity reflects the extent to which good
technical and management practice has been adopted in organizational software
development processes. The primary goals of this approach are improved prod-
uct quality and process predictability.

2. The agile approach, which has focused on iterative development and the reduc-
tion of overheads in the software process. The primary characteristics of agile
methods are rapid delivery of functionality and responsiveness to changing cus-
tomer requirements. The improvement philosophy here is that the best processes
are those with the lowest overheads and agile approaches can achieve this.
I describe agile approaches in Chapter 3.

People who are enthusiastic about and committed to each of these approaches are
generally skeptical of the benefits of the other. The process maturity approach is
rooted in plan-driven development and usually requires increased “overhead,” in the
sense that activities are introduced that are not directly relevant to program develop-
ment. Agile approaches focus on the code being developed and deliberately mini-
mize formality and documentation.

The general process improvement process underlying the process maturity
approach is a cyclical process, as shown in Figure 2.11. The stages in this process are:

1. Process measurement You measure one or more attributes of the software pro-
cess or product. These measurements form a baseline that helps you decide if

Analyze

Measure

Change

Figure 2.11 The process
improvement cycle

process improvements have been effective. As you introduce improvements, you
re-measure the same attributes, which will hopefully have improved in some way.

2. Process analysis The current process is assessed, and process weaknesses and
bottlenecks are identified. Process models (sometimes called process maps) that
describe the process may be developed during this stage. The analysis may be
focused by considering process characteristics such as rapidity and robustness.

3. Process change Process changes are proposed to address some of the identified
process weaknesses. These are introduced, and the cycle resumes to collect data
about the effectiveness of the changes.

Without concrete data on a process or the software developed using that process, it
is impossible to assess the value of process improvement. However, companies starting
the process improvement process are unlikely to have process data available as an
improvement baseline. Therefore, as part of the first cycle of changes, you may have to
collect data about the software process and to measure software product characteristics.

Process improvement is a long-term activity, so each of the stages in the improve-
ment process may last several months. It is also a continuous activity as, whatever
new processes are introduced, the business environment will change and the new
processes will themselves have to evolve to take these changes into account.

The notion of process maturity was introduced in the late 1980s when the
Software Engineering Institute (SEI) proposed their model of process capability
maturity (Humphrey 1988). The maturity of a software company’s processes reflects
the process management, measurement, and use of good software engineering prac-
tices in the company. This idea was introduced so that the U.S. Department of
Defense could assess the software engineering capability of defense contractors,
with a view to limiting contracts to those contractors who had reached a required
level of process maturity. Five levels of process maturity were proposed. as shown in
Figure 2.12. These have evolved and developed over the last 25 years (Chrissis,
Konrad, and Shrum 2011), but the fundamental ideas in Humphrey’s model are still
the basis of software process maturity assessment.

The levels in the process maturity model are:

1. Initial The goals associated with the process area are satisfied, and for all pro-
cesses the scope of the work to be performed is explicitly set out and communi-
cated to the team members.

2. Managed At this level, the goals associated with the process area are met, and organ-
izational policies are in place that define when each process should be used. There
must be documented project plans that define the project goals. Resource manage-
ment and process monitoring procedures must be in place across the institution.

3. Defined This level focuses on organizational standardization and deployment of
processes. Each project has a managed process that is adapted to the project require-
ments from a defined set of organizational processes. Process assets and process
measurements must be collected and used for future process improvements.

  2.4  ■  Process improvement    67

68    Chapter 2  ■  Software processes

4. Quantitatively managed At this level, there is an organizational responsibility to
use statistical and other quantitative methods to control subprocesses. That is, col-
lected process and product measurements must be used in process management.

5. Optimizing At this highest level, the organization must use the process and
product measurements to drive process improvement. Trends must be analyzed
and the processes adapted to changing business needs.

The work on process maturity levels has had a major impact on the software
industry. It focused attention on the software engineering processes and practices
that were used and led to significant improvements in software engineering capabil-
ity. However, there is too much overhead in formal process improvement for small
companies, and maturity estimation with agile processes is difficult. Consequently,
only large software companies now use this maturity-focused approach to software
process improvement.

Level 3
Defined

Level 2
Managed

Level 1
Initial

Level 4
Quantitatively

managed

Level 5
Optimizing

Figure 2.12 Capability
maturity levels

K e y p o i n t s

■ Software processes are the activities involved in producing a software system. Software process
models are abstract representations of these processes.

■ General process models describe the organization of software processes. Examples of these
general models include the waterfall model, incremental development, and reusable component
configuration and integration.

  Chapter 2  ■  Website    69

■ Requirements engineering is the process of developing a software specification. Specifications
are intended to communicate the system needs of the customer to the system developers.

■ Design and implementation processes are concerned with transforming a requirements specifi-
cation into an executable software system.

■ Software validation is the process of checking that the system conforms to its specification and
that it meets the real needs of the users of the system.

■ Software evolution takes place when you change existing software systems to meet new
requirements. Changes are continuous, and the software must evolve to remain useful.

■ Processes should include activities to cope with change. This may involve a prototyping phase that
helps avoid poor decisions on requirements and design. Processes may be structured for iterative
development and delivery so that changes may be made without disrupting the system as a whole.

■ Process improvement is the process of improving existing software processes to improve soft-
ware quality, lower development costs, or reduce development time. It is a cyclic process involv-
ing process measurement, analysis, and change.

F u r t h e r 	 r e a d i n g

“Process Models in Software Engineering.” This is an excellent overview of a wide range of software
engineering process models that have been proposed. (W. Scacchi, Encyclopaedia of Software
 Engineering, ed. J. J. Marciniak, John Wiley & Sons, 2001) http://www.ics.uci.edu/~wscacchi/
Papers/SE-Encyc/Process-Models-SE-Encyc.pdf

Software Process Improvement: Results and Experience from the Field. This book is a collection of
papers focusing on process improvement case studies in several small and medium-sized Norwegian
companies. It also includes a good introduction to the general issues of process improvement.
 (Conradi, R., Dybå, T., Sjøberg, D., and Ulsund, T. (eds.), Springer, 2006).

“Software Development Life Cycle Models and Methodologies.” This blog post is a succinct sum-
mary of several software process models that have been proposed and used. It discusses the advan-
tages and disadvantages of each of these models (M. Sami, 2012). http://melsatar.wordpress.
com/2012/03/15/software-development-life-cycle-models-and-methodologies/

W e b S i t e

PowerPoint slides for this chapter:

www.pearsonglobaleditions.com/Sommerville

Links to supporting videos:

http://software-engineering-book.com/videos/software-engineering/

70    Chapter 2  ■  Software processes

e x e r C i S e S

 2.1. Suggest the most appropriate generic software process model that might be used as a basis
for managing the development of the following systems. Explain your answer according to the
type of system being developed:

A system to control antilock braking in a car

A virtual reality system to support software maintenance

A university accounting system that replaces an existing system

An interactive travel planning system that helps users plan journeys with the lowest
environmental impact

 2.2. Incremental software development could be very effectively used for customers who do not
have a clear idea about the systems needed for their operations. Discuss.

 2.3. Consider the integration and configuration process model shown in Figure 2.3. Explain why it
is essential to repeat the requirements engineering activity in the process.

 2.4. Suggest why it is important to make a distinction between developing the user requirements
and developing system requirements in the requirements engineering process.

 2.5. Using an example, explain why the design activities of architectural design, database design,
interface design, and component design are interdependent.

 2.6. Explain why software testing should always be an incremental, staged activity. Are program-
mers the best people to test the programs that they have developed?

 2.7. Imagine that a government wants a software program that helps to keep track of the utiliza-
tion of the country’s vast mineral resources. Although the requirements put forward by the
government were not very clear, a software company was tasked with the development of a
prototype. The government found the prototype impressive, and asked it be extended to be
the actual system that would be used. Discuss the pros and cons of taking this approach.

 2.8. You have developed a prototype of a software system and your manager is very impressed by
it. She proposes that it should be put into use as a production system, with new features
added as required. This avoids the expense of system development and makes the system
immediately useful. Write a short report for your manager explaining why prototype systems
should not normally be used as production systems.

 2.9. Suggest two advantages and two disadvantages of the approach to process assessment and
improvement that is embodied in the SEI’s Capability Maturity framework.

2.10. Historically, the introduction of technology has caused profound changes in the labor market
and, temporarily at least, displaced people from jobs. Discuss whether the introduction of
extensive process automation is likely to have the same consequences for software engi-
neers. If you don’t think it will, explain why not. If you think that it will reduce job opportuni-
ties, is it ethical for the engineers affected to passively or actively resist the introduction of
this technology?

70    Chapter 2  ■  Software processes

  Chapter 2  ■  References    71

r e F e r e n C e S

Abrial, J. R. 2005. The B Book: Assigning Programs to Meanings. Cambridge, UK: Cambridge
 University Press.

 . 2010. Modeling in Event-B: System and Software Engineering. Cambridge, UK: Cambridge
University Press.

Boehm, B. W. (1988). “A Spiral Model of Software Development and Enhancement.” IEEE Computer,
21 (5), 61–72. doi:10.1145/12944.12948

Boehm, B. W., and R. Turner. 2004. “Balancing Agility and Discipline: Evaluating and Integrating
Agile and Plan-Driven Methods.” In 26th Int. Conf on Software Engineering, Edinburgh, Scotland.
doi:10.1109/ICSE.2004.1317503.

Chrissis, M. B., M. Konrad, and S. Shrum. 2011. CMMI for Development: Guidelines for Process
 Integration and Product Improvement, 3rd ed. Boston: Addison-Wesley.

Humphrey, W. S. 1988. “Characterizing the Software Process: A Maturity Framework.” IEEE Software
5 (2): 73–79. doi:10.1109/2.59.

Koskela, L. 2013. Effective Unit Testing: A Guide for Java Developers. Greenwich, CT: Manning
Publications.

Krutchen, P. 2003. The Rational Unified Process—An Introduction, 3rd ed. Reading, MA: Addison-Wesley.

Royce, W. W. 1970. “Managing the Development of Large Software Systems: Concepts and
 Techniques.” In IEEE WESTCON, 1–9. Los Angeles, CA.

Wheeler, W., and J. White. 2013. Spring in Practice. Greenwich, CT: Manning Publications.

Agile software
development

3

Objectives
The objective of this chapter is to introduce you to agile software
development methods. When you have read the chapter, you will:

■ understand the rationale for agile software development methods,
the agile manifesto, and the differences between agile and
plan-driven development;

■ know about important agile development practices such as user
stories, refactoring, pair programming and test-first development;

■ understand the Scrum approach to agile project management;

■ understand the issues of scaling agile development methods and
combining agile approaches with plan-driven approaches in the
development of large software systems.

Contents
3.1 Agile methods

3.2 Agile development techniques

3.3 Agile project management

3.4 Scaling agile methods

Businesses now operate in a global, rapidly changing environment. They have to
respond to new opportunities and markets, changing economic conditions and the
emergence of competing products and services. Software is part of almost all busi-
ness operations, so new software has to be developed quickly to take advantage of
new opportunities and to respond to competitive pressure. Rapid software develop-
ment and delivery is therefore the most critical requirement for most business systems.
In fact, businesses may be willing to trade off software quality and compromise on
requirements if they can deploy essential new software quickly.

Because these businesses are operating in a changing environment, it is practi-
cally impossible to derive a complete set of stable software requirements.
Requirements change because customers find it impossible to predict how a system
will affect working practices, how it will interact with other systems, and what user
operations should be automated. It may only be after a system has been delivered
and users gain experience with it that the real requirements become clear. Even then,
external factors drive requirements change.

Plan-driven software development processes that completely specify the require-
ments and then design, build, and test a system are not geared to rapid software devel-
opment. As the requirements change or as requirements problems are discovered, the
system design or implementation has to be reworked and retested. As a consequence,
a conventional waterfall or specification-based process is usually a lengthy one, and
the final software is delivered to the customer long after it was originally specified.

For some types of software, such as safety-critical control systems, where a com-
plete analysis of the system is essential, this plan-driven approach is the right one.
However, in a fast-moving business environment, it can cause real problems. By the
time the software is available for use, the original reason for its procurement may
have changed so radically that the software is effectively useless. Therefore, for
business systems in particular, development processes that focus on rapid software
development and delivery are essential.

The need for rapid software development and processes that can handle changing
requirements has been recognized for many years (Larman and Basili 2003).
However, faster software development really took off in the late 1990s with the
development of the idea of “agile methods” such as Extreme Programming (Beck
1999), Scrum (Schwaber and Beedle 2001), and DSDM (Stapleton 2003).

Rapid software development became known as agile development or agile meth-
ods. These agile methods are designed to produce useful software quickly. All of the
agile methods that have been proposed share a number of common characteristics:

1. The processes of specification, design and implementation are interleaved.
There is no detailed system specification, and design documentation is mini-
mized or generated automatically by the programming environment used to
implement the system. The user requirements document is an outline definition
of the most important characteristics of the system.

2. The system is developed in a series of increments. End-users and other system
stakeholders are involved in specifying and evaluating each increment.

Chapter 3 ■ Agile software development 73

74 Chapter 3 ■ Agile software development

They may propose changes to the software and new requirements that should be
implemented in a later version of the system.

3. Extensive tool support is used to support the development process. Tools that
may be used include automated testing tools, tools to support configuration man-
agement, and system integration and tools to automate user interface production.

Agile methods are incremental development methods in which the increments are
small, and, typically, new releases of the system are created and made available to
 customers every two or three weeks. They involve customers in the development
 process to get rapid feedback on changing requirements. They minimize documentation
by using informal communications rather than formal meetings with written documents.

Agile approaches to software development consider design and implementation
to be the central activities in the software process. They incorporate other activities,
such as requirements elicitation and testing, into design and implementation. By
contrast, a plan-driven approach to software engineering identifies separate stages in
the software process with outputs associated with each stage. The outputs from one
stage are used as a basis for planning the following process activity.

Figure 3.1 shows the essential distinctions between plan-driven and agile approaches
to system specification. In a plan-driven software development process, iteration
occurs within activities, with formal documents used to communicate between stages
of the process. For example, the requirements will evolve, and, ultimately, a require-
ments specification will be produced. This is then an input to the design and imple-
mentation process. In an agile approach, iteration occurs across activities. Therefore,
the requirements and the design are developed together rather than separately.

In practice, as I explain in Section 3.4.1, plan-driven processes are often used along
with agile programming practices, and agile methods may incorporate some planned

Requirements
specification

Requirements
engineering

Design and
implementation

Requirements change
requests

Plan-based development

Agile development

Requirements
engineering

Design and
implementation

Figure 3.1 Plan-driven
and agile development

 3.1 ■ Agile methods 75

activities apart from programming and testing. It is perfectly feasible, in a plan-driven
process, to allocate requirements and plan the design and development phase as a
series of increments. An agile process is not inevitably code-focused, and it may
 produce some design documentation. Agile developers may decide that an iteration
should not produce new code but rather should produce system models and documentation.

	 3.1	 Agile	methods

In the 1980s and early 1990s, there was a widespread view that the best way to
achieve better software was through careful project planning, formalized quality
assurance, use of analysis and design methods supported by software tools, and con-
trolled and rigorous software development processes. This view came from the soft-
ware engineering community that was responsible for developing large, long-lived
software systems such as aerospace and government systems.

This plan-driven approach was developed for software developed by large teams,
working for different companies. Teams were often geographically dispersed and
worked on the software for long periods of time. An example of this type of software
is the control systems for a modern aircraft, which might take up to 10 years from
initial specification to deployment. Plan-driven approaches involve a significant
overhead in planning, designing, and documenting the system. This overhead is jus-
tified when the work of multiple development teams has to be coordinated, when the
system is a critical system, and when many different people will be involved in
maintaining the software over its lifetime.

However, when this heavyweight, plan-driven development approach is applied
to small and medium-sized business systems, the overhead involved is so large that
it dominates the software development process. More time is spent on how the sys-
tem should be developed than on program development and testing. As the system
requirements change, rework is essential and, in principle at least, the specification
and design have to change with the program.

Dissatisfaction with these heavyweight approaches to software engineering
led to the development of agile methods in the late 1990s. These methods allowed
the development team to focus on the software itself rather than on its design and
documentation. They are best suited to application development where the sys-
tem requirements usually change rapidly during the development process. They
are intended to deliver working software quickly to customers, who can then pro-
pose new and changed requirements to be included in later iterations of the sys-
tem. They aim to cut down on process bureaucracy by avoiding work that has
dubious long-term value and eliminating documentation that will probably never
be used.

The philosophy behind agile methods is reflected in the agile manifesto (http://
agilemanifesto.org) issued by the leading developers of these methods. This mani-
festo states:

76 Chapter 3 ■ Agile software development

We are uncovering better ways of developing software by doing it and helping
others do it. Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the
left more†.

All agile methods suggest that software should be developed and delivered incre-
mentally. These methods are based on different agile processes but they share a set
of principles, based on the agile manifesto, and so they have much in common. I
have listed these principles in Figure 3.2.

Agile methods have been particularly successful for two kinds of system development.

1. Product development where a software company is developing a small or
medium-sized product for sale. Virtually all software products and apps are now
developed using an agile approach.

2. Custom system development within an organization, where there is a clear com-
mitment from the customer to become involved in the development process and
where there are few external stakeholders and regulations that affect the software.

Agile methods work well in these situations because it is possible to have con-
tinuous communications between the product manager or system customer and the
development team. The software itself is a stand-alone system rather than tightly
integrated with other systems being developed at the same time. Consequently, there
is no need to coordinate parallel development streams. Small and medium-sized

Principle Description

Customer involvement Customers should be closely involved throughout the development process.
Their role is provide and prioritize new system requirements and to evaluate
the iterations of the system.

Embrace change Expect the system requirements to change, and so design the system to
accommodate these changes.

Incremental delivery The software is developed in increments, with the customer specifying the
requirements to be included in each increment.

Maintain simplicity Focus on simplicity in both the software being developed and in the
development process. Wherever possible, actively work to eliminate
complexity from the system.

People, not process The skills of the development team should be recognized and exploited.
Team members should be left to develop their own ways of working without
prescriptive processes.

Figure 3.2 The
principles of agile
methods

†http://agilemanifesto.org/

 3.2 ■ Agile development techniques 77

 systems can be developed by co-located teams, so informal communications among
team members work well.

	 3.2		 Agile	development	techniques

The ideas underlying agile methods were developed around the same time by a number
of different people in the 1990s. However, perhaps the most significant approach to
changing software development culture was the development of Extreme Programming
(XP). The name was coined by Kent Beck (Beck 1998) because the approach was
developed by pushing recognized good practice, such as iterative development, to
“extreme” levels. For example, in XP, several new versions of a system may be devel-
oped by different programmers, integrated, and tested in a day. Figure 3.3 illustrates
the XP process to produce an increment of the system that is being developed.

In XP, requirements are expressed as scenarios (called user stories), which are
implemented directly as a series of tasks. Programmers work in pairs and develop
tests for each task before writing the code. All tests must be successfully executed
when new code is integrated into the system. There is a short time gap between
releases of the system.

Extreme programming was controversial as it introduced a number of agile prac-
tices that were quite different from the development practice of that time. These prac-
tices are summarized in Figure 3.4 and reflect the principles of the agile manifesto:

1. Incremental development is supported through small, frequent releases of the sys-
tem. Requirements are based on simple customer stories or scenarios that are used
as a basis for deciding what functionality should be included in a system increment.

2. Customer involvement is supported through the continuous engagement of the
customer in the development team. The customer representative takes part in
the development and is responsible for defining acceptance tests for the system.

3. People, not process, are supported through pair programming, collective owner-
ship of the system code, and a sustainable development process that does not
involve excessively long working hours.

Break down
stories to tasks

Select user
stories for this

release
Plan release

Release
software

Evaluate
system

Develop/integrate/
test softwareFigure 3.3 The XP

release cycle

78 Chapter 3 ■ Agile software development

Principle or practice Description

Collective ownership The pairs of developers work on all areas of the system, so that no islands of
expertise develop and all the developers take responsibility for all of the code.
Anyone can change anything.

Continuous
integration

As soon as the work on a task is complete, it is integrated into the whole
system. After any such integration, all the unit tests in the system must pass.

Incremental planning Requirements are recorded on “story cards,” and the stories to be included in
a release are determined by the time available and their relative priority. The
developers break these stories into development “tasks.” See Figures 3.5
and 3.6.

On-site customer A representative of the end-user of the system (the Customer) should be
available full time for the use of the XP team. In an extreme programming
process, the customer is a member of the development team and is
responsible for bringing system requirements to the team for implementation.

Pair programming Developers work in pairs, checking each other's work and providing the
support to always do a good job.

Refactoring All developers are expected to refactor the code continuously as soon as
potential code improvements are found. This keeps the code simple and
maintainable.

Simple design Enough design is carried out to meet the current requirements and no more.

Small releases The minimal useful set of functionality that provides business value is
developed first. Releases of the system are frequent and incrementally add
functionality to the first release.

Sustainable pace Large amounts of overtime are not considered acceptable, as the net effect is
often to reduce code quality and medium-term productivity.

Test first
development

An automated unit test framework is used to write tests for a new piece of
functionality before that functionality itself is implemented.

Figure 3.4 Extreme
programming practices 4. Change is embraced through regular system releases to customers, test-first

development, refactoring to avoid code degeneration, and continuous integra-
tion of new functionality.

5. Maintaining simplicity is supported by constant refactoring that improves code
quality and by using simple designs that do not unnecessarily anticipate future
changes to the system.

In practice, the application of Extreme Programming as originally proposed has
proved to be more difficult than anticipated. It cannot be readily integrated with the
management practices and culture of most businesses. Therefore, companies adopt-
ing agile methods pick and choose those XP practices that are most appropriate for
their way of working. Sometimes these are incorporated into their own development
processes but, more commonly, they are used in conjunction with a management-
focused agile method such as Scrum (Rubin 2013).

 3.2 ■ Agile development techniques 79

I am not convinced that XP on its own is a practical agile method for most com-
panies, but its most significant contribution is probably the set of agile development
practices that it introduced to the community. I discuss the most important of these
practices in this section.

 3.2.1 User stories

Software requirements always change. To handle these changes, agile methods do not
have a separate requirements engineering activity. Rather, they integrate requirements
elicitation with development. To make this easier, the idea of “user stories” was devel-
oped where a user story is a scenario of use that might be experienced by a system user.

As far as possible, the system customer works closely with the development team
and discusses these scenarios with other team members. Together, they develop a
“story card” that briefly describes a story that encapsulates the customer needs. The
development team then aims to implement that scenario in a future release of the
software. An example of a story card for the Mentcare system is shown in Figure 3.5.
This is a short description of a scenario for prescribing medication for a patient.

User stories may be used in planning system iterations. Once the story cards have
been developed, the development team breaks these down into tasks (Figure 3.6) and
estimates the effort and resources required for implementing each task. This usually
involves discussions with the customer to refine the requirements. The customer
then prioritizes the stories for implementation, choosing those stories that can be

Kate is a doctor who wishes to prescribe medication for a patient attending a clinic.
The patient record is already displayed on her computer so she clicks on the
medication field and can select ‘current medication’, ‘new medication’ or ‘formulary’.

If she selects ‘current medication’, the system asks her to check the dose; If she
wants to change the dose, she enters the new dose then confirms the prescription.

If she chooses ‘new medication’, the system assumes that she knows which
medication to prescribe. She types the first few letters of the drug name. The system
displays a list of possible drugs starting with these letters. She chooses the required
medication and the system responds by asking her to check that the medication
selected is correct. She enters the dose then confirms the prescription.

If she chooses ‘formulary’, the system displays a search box for the approved
formulary. She can then search for the drug required. She selects a drug and is asked
to check that the medication is correct. She enters the dose then confirms the
prescription.

The system always checks that the dose is within the approved range. If it isn’t, Kate
is asked to change the dose.

After Kate has confirmed the prescription, it will be displayed for checking. She either
clicks ‘OK’ or ‘Change’. If she clicks ‘OK’, the prescription is recorded on the audit
database. If she clicks on ‘Change’, she reenters the ‘Prescribing medication’ process.

Prescribing medication

Figure 3.5 A
“prescribing medication”
story

80 Chapter 3 ■ Agile software development

used immediately to deliver useful business support. The intention is to identify
 useful functionality that can be implemented in about two weeks, when the next
release of the system is made available to the customer.

Of course, as requirements change, the unimplemented stories change or may be
discarded. If changes are required for a system that has already been delivered, new
story cards are developed and again, the customer decides whether these changes
should have priority over new functionality.

The idea of user stories is a powerful one—people find it much easier to relate to
these stories than to a conventional requirements document or use cases. User stories can
be helpful in getting users involved in suggesting requirements during an initial prede-
velopment requirements elicitation activity. I discuss this in more detail in Chapter 4.

The principal problem with user stories is completeness. It is difficult to judge if
enough user stories have been developed to cover all of the essential requirements
of a system. It is also difficult to judge if a single story gives a true picture of an
activity. Experienced users are often so familiar with their work that they leave
things out when describing it.

 3.2.2 Refactoring

A fundamental precept of traditional software engineering is that you should design
for change. That is, you should anticipate future changes to the software and design
it so that these changes can be easily implemented. Extreme programming, however,
has discarded this principle on the basis that designing for change is often wasted
effort. It isn’t worth taking time to add generality to a program to cope with change.
Often the changes anticipated never materialize, or completely different change
requests may actually be made.

Of course, in practice, changes will always have to be made to the code being devel-
oped. To make these changes easier, the developers of XP suggested that the code being
developed should be constantly refactored. Refactoring (Fowler et al. 1999) means that
the programming team look for possible improvements to the software and implements

Task 1: Change dose of prescribed drug

Task 2: Formulary selection

Task 3: Dose checking

Dose checking is a safety precaution to check that
the doctor has not prescribed a dangerously small or
large dose.

Using the formulary id for the generic drug name,
look up the formulary and retrieve the recommended
maximum and minimum dose.

Check the prescribed dose against the minimum and
maximum. If outside the range, issue an error
message saying that the dose is too high or too low.
If within the range, enable the ‘Confirm’ button.

Figure 3.6 Examples of
task cards for prescribing
medication

 3.2 ■ Agile development techniques 81

them immediately. When team members see code that can be improved, they make
these improvements even in situations where there is no immediate need for them.

A fundamental problem of incremental development is that local changes tend to
degrade the software structure. Consequently, further changes to the software become
harder and harder to implement. Essentially, the development proceeds by finding
workarounds to problems, with the result that code is often duplicated, parts of the
software are reused in inappropriate ways, and the overall structure degrades as code is
added to the system. Refactoring improves the software structure and readability and
so avoids the structural deterioration that naturally occurs when software is changed.

Examples of refactoring include the reorganization of a class hierarchy to remove
duplicate code, the tidying up and renaming of attributes and methods, and the
replacement of similar code sections, with calls to methods defined in a program
library. Program development environments usually include tools for refactoring.
These simplify the process of finding dependencies between code sections and mak-
ing global code modifications.

In principle, when refactoring is part of the development process, the software
should always be easy to understand and change as new requirements are proposed.
In practice, this is not always the case. Sometimes development pressure means that
refactoring is delayed because the time is devoted to the implementation of new
functionality. Some new features and changes cannot readily be accommodated by
code-level refactoring and require that the architecture of the system be modified.

 3.2.3 Test-first development

As I discussed in the introduction to this chapter, one of the important differences
between incremental development and plan-driven development is in the way that
the system is tested. With incremental development, there is no system specification
that can be used by an external testing team to develop system tests. As a conse-
quence, some approaches to incremental development have a very informal testing
process, in comparison with plan-driven testing.

Extreme Programming developed a new approach to program testing to address
the difficulties of testing without a specification. Testing is automated and is central
to the development process, and development cannot proceed until all tests have
been successfully executed. The key features of testing in XP are:

1. test-first development,

2. incremental test development from scenarios,

3. user involvement in the test development and validation, and

4. the use of automated testing frameworks.

XP’s test-first philosophy has now evolved into more general test-driven develop-
ment techniques (Jeffries and Melnik 2007). I believe that test-driven development is
one of the most important innovations in software engineering. Instead of writing code
and then writing tests for that code, you write the tests before you write the code. This

82 Chapter 3 ■ Agile software development

means that you can run the test as the code is being written and discover problems dur-
ing development. I discuss test-driven development in more depth in Chapter 8.

Writing tests implicitly defines both an interface and a specification of behavior for
the functionality being developed. Problems of requirements and interface misunder-
standings are reduced. Test-first development requires there to be a clear relationship
between system requirements and the code implementing the corresponding require-
ments. In XP, this relationship is clear because the story cards representing the require-
ments are broken down into tasks and the tasks are the principal unit of implementation.

In test-first development, the task implementers have to thoroughly understand
the specification so that they can write tests for the system. This means that ambi-
guities and omissions in the specification have to be clarified before implementation
begins. Furthermore, it also avoids the problem of “test-lag.” This may happen when
the developer of the system works at a faster pace than the tester. The implementa-
tion gets further and further ahead of the testing and there is a tendency to skip tests,
so that the development schedule can be maintained.

XP’s test-first approach assumes that user stories have been developed, and these
have been broken down into a set of task cards, as shown in Figure 3.6. Each task
generates one or more unit tests that check the implementation described in that task.
Figure 3.7 is a shortened description of a test case that has been developed to check
that the prescribed dose of a drug does not fall outside known safe limits.

The role of the customer in the testing process is to help develop acceptance tests
for the stories that are to be implemented in the next release of the system. As I
explain in Chapter 8, acceptance testing is the process whereby the system is tested
using customer data to check that it meets the customer’s real needs.

Test automation is essential for test-first development. Tests are written as exe-
cutable components before the task is implemented. These testing components
should be stand-alone, should simulate the submission of input to be tested, and
should check that the result meets the output specification. An automated test frame-
work is a system that makes it easy to write executable tests and submit a set of tests
for execution. Junit (Tahchiev et al. 2010) is a widely used example of an automated
testing framework for Java programs.

Input:
1. A number in mg representing a single dose of the drug.
2. A number representing the number of single doses per day.

Tests:
1. Test for inputs where the single dose is correct but the frequency is too

high.
2. Test for inputs where the single dose is too high and too low.
3. Test for inputs where the single dose * frequency is too high and too low.
4. Test for inputs where single dose * frequency is in the permitted range.

Output:
OK or error message indicating that the dose is outside the safe range.

Test 4: Dose checking

Figure 3.7 Test case
description for dose
checking

 3.2 ■ Agile development techniques 83

As testing is automated, there is always a set of tests that can be quickly and eas-
ily executed. Whenever any functionality is added to the system, the tests can be run
and problems that the new code has introduced can be caught immediately.

Test-first development and automated testing usually result in a large number of
tests being written and executed. However, there are problems in ensuring that test
coverage is complete:

1. Programmers prefer programming to testing, and sometimes they take shortcuts
when writing tests. For example, they may write incomplete tests that do not
check for all possible exceptions that may occur.

2. Some tests can be very difficult to write incrementally. For example, in a com-
plex user interface, it is often difficult to write unit tests for the code that imple-
ments the “display logic” and workflow between screens.

It is difficult to judge the completeness of a set of tests. Although you may have a lot
of system tests, your test set may not provide complete coverage. Crucial parts of
the system may not be executed and so will remain untested. Therefore, although a
large set of frequently executed tests may give the impression that the system is complete
and correct, this may not be the case. If the tests are not reviewed and further tests are
written after development, then undetected bugs may be delivered in the system release.

 3.2.4 Pair programming

Another innovative practice that was introduced in XP is that programmers work in
pairs to develop the software. The programming pair sits at the same computer to
develop the software. However, the same pair do not always program together.
Rather, pairs are created dynamically so that all team members work with each other
during the development process.

Pair programming has a number of advantages.

1. It supports the idea of collective ownership and responsibility for the system.
This reflects Weinberg’s idea of egoless programming (Weinberg 1971) where
the software is owned by the team as a whole and individuals are not held
responsible for problems with the code. Instead, the team has collective respon-
sibility for resolving these problems.

2. It acts as an informal review process because each line of code is looked at by at least
two people. Code inspections and reviews (Chapter 24) are effective in discovering
a high percentage of software errors. However, they are time consuming to organize
and, typically, introduce delays into the development process. Pair programming is a
less formal process that probably doesn’t find as many errors as code inspections.
However, it is cheaper and easier to organize than formal program inspections.

3. It encourages refactoring to improve the software structure. The problem with ask-
ing programmers to refactor in a normal development environment is that effort

84 Chapter 3 ■ Agile software development

involved is expended for long-term benefit. An developer who spends time refac-
toring may be judged to be less efficient than one who simply carries on developing
code. Where pair programming and collective ownership are used, others benefit
immediately from the refactoring so they are likely to support the process.

You might think that pair programming would be less efficient than individual
programming. In a given time, a pair of developers would produce half as much code
as two individuals working alone. Many companies that have adopted agile methods
are suspicious of pair programming and do not use it. Other companies mix pair and
individual programming with an experienced programmer working with a less expe-
rienced colleague when they have problems.

Formal studies of the value of pair programming have had mixed results. Using
student volunteers, Williams and her collaborators (Williams et al. 2000) found that
productivity with pair programming seems to be comparable to that of two people
working independently. The reasons suggested are that pairs discuss the software
before development and so probably have fewer false starts and less rework.
Furthermore, the number of errors avoided by the informal inspection is such that
less time is spent repairing bugs discovered during the testing process.

However, studies with more experienced programmers did not replicate these
results (Arisholm et al. 2007). They found that there was a significant loss of produc-
tivity compared with two programmers working alone. There were some quality
benefits, but these did not fully compensate for the pair-programming overhead.
Nevertheless, the sharing of knowledge that happens during pair programming is
very important as it reduces the overall risks to a project when team members leave.
In itself, this may make pair programming worthwhile.

	 3.3		 Agile	project	management

In any software business, managers need to know what is going on and whether or not
a project is likely to meet its objectives and deliver the software on time with the pro-
posed budget. Plan-driven approaches to software development evolved to meet this
need. As I discussed in Chapter 23, managers draw up a plan for the project showing
what should be delivered, when it should be delivered, and who will work on the devel-
opment of the project deliverables. A plan-based approach requires a manager to have
a stable view of everything that has to be developed and the development processes.

The informal planning and project control that was proposed by the early adher-
ents of agile methods clashed with this business requirement for visibility. Teams
were self-organizing, did not produce documentation, and planned development in
very short cycles. While this can and does work for small companies developing
software products, it is inappropriate for larger companies who need to know what is
going on in their organization.

Like every other professional software development process, agile development
has to be managed so that the best use is made of the time and resources available to

 3.3 ■ Agile project management 85

the team. To address this issue, the Scrum agile method was developed (Schwaber
and Beedle 2001; Rubin 2013) to provide a framework for organizing agile projects
and, to some extent at least, provide external visibility of what is going on. The devel-
opers of Scrum wished to make clear that Scrum was not a method for project man-
agement in the conventional sense, so they deliberately invented new terminology,
such as ScrumMaster, which replaced names such as project manager. Figure 3.8
summarizes Scrum terminology and what it means.

Scrum is an agile method insofar as it follows the principles from the agile mani-
festo, which I showed in Figure 3.2. However, it focuses on providing a framework
for agile project organization, and it does not mandate the use of specific development

Scrum term Definition

Development team A self-organizing group of software developers, which should be no
more than seven people. They are responsible for developing the
software and other essential project documents.

Potentially shippable product
increment

The software increment that is delivered from a sprint. The idea is that
this should be “potentially shippable,” which means that it is in a
finished state and no further work, such as testing, is needed to
incorporate it into the final product. In practice, this is not always
achievable.

Product backlog This is a list of “to do” items that the Scrum team must tackle. They
may be feature definitions for the software, software requirements, user
stories, or descriptions of supplementary tasks that are needed, such as
architecture definition or user documentation.

Product owner An individual (or possibly a small group) whose job is to identify
product features or requirements, prioritize these for development, and
continuously review the product backlog to ensure that the project
continues to meet critical business needs. The Product Owner can be a
customer but might also be a product manager in a software company
or other stakeholder representative.

Scrum A daily meeting of the Scrum team that reviews progress and prioritizes
work to be done that day. Ideally, this should be a short face-to-face
meeting that includes the whole team.

ScrumMaster The ScrumMaster is responsible for ensuring that the Scrum process is
followed and guides the team in the effective use of Scrum. He or she
is responsible for interfacing with the rest of the company and for
ensuring that the Scrum team is not diverted by outside interference.
The Scrum developers are adamant that the ScrumMaster should not
be thought of as a project manager. Others, however, may not always
find it easy to see the difference.

Sprint A development iteration. Sprints are usually 2 to 4 weeks long.

Velocity An estimate of how much product backlog effort a team can cover in a
single sprint. Understanding a team’s velocity helps them estimate what
can be covered in a sprint and provides a basis for measuring
improving performance.

Figure 3.8 Scrum
terminology

86 Chapter 3 ■ Agile software development

practices such as pair programming and test-first development. This means that it
can be more easily integrated with existing practice in a company. Consequently, as
agile methods have become a mainstream approach to software development, Scrum
has emerged as the most widely used method.

The Scrum process or sprint cycle is shown in Figure 3.9. The input to the process
is the product backlog. Each process iteration produces a product increment that
could be delivered to customers.

The starting point for the Scrum sprint cycle is the product backlog—the list of
items such as product features, requirements, and engineering improvement that
have to be worked on by the Scrum team. The initial version of the product backlog
may be derived from a requirements document, a list of user stories, or other descrip-
tion of the software to be developed.

While the majority of entries in the product backlog are concerned with the imple-
mentation of system features, other activities may also be included. Sometimes, when
planning an iteration, questions that cannot be easily answered come to light and addi-
tional work is required to explore possible solutions. The team may carry out some pro-
totyping or trial development to understand the problem and solution. There may also be
backlog items to design the system architecture or to develop system documentation.

The product backlog may be specified at varying levels of detail, and it is the
responsibility of the Product Owner to ensure that the level of detail in the specifica-
tion is appropriate for the work to be done. For example, a backlog item could be a
complete user story such as that shown in Figure 3.5, or it could simply be an instruc-
tion such as “Refactor user interface code” that leaves it up to the team to decide on
the refactoring to be done.

Each sprint cycle lasts a fixed length of time, which is usually between 2 and 4 weeks.
At the beginning of each cycle, the Product Owner prioritizes the items on the product
backlog to define which are the most important items to be developed in that cycle.
Sprints are never extended to take account of unfinished work. Items are returned to the
product backlog if these cannot be completed within the allocated time for the sprint.

The whole team is then involved in selecting which of the highest priority items
they believe can be completed. They then estimate the time required to complete
these items. To make these estimates, they use the velocity attained in previous

Review work
to be done

Select
items

Plan
sprint

Review
sprintSprint

Scrum

Product
backlog

Sprint
backlog

Potentially
shippable
softwareFigure 3.9 The Scrum

sprint cycle

 3.3 ■ Agile project management 87

sprints, that is, how much of the backlog could be covered in a single sprint. This
leads to the creation of a sprint backlog—the work to be done during that sprint. The
team self-organizes to decide who will work on what, and the sprint begins.

During the sprint, the team holds short daily meetings (Scrums) to review pro-
gress and, where necessary, to re-prioritize work. During the Scrum, all team mem-
bers share information, describe their progress since the last meeting, bring up
problems that have arisen, and state what is planned for the following day. Thus,
everyone on the team knows what is going on and, if problems arise, can re-plan
short-term work to cope with them. Everyone participates in this short-term plan-
ning; there is no top-down direction from the ScrumMaster.

The daily interactions among Scrum teams may be coordinated using a Scrum
board. This is an office whiteboard that includes information and post-it notes about
the Sprint backlog, work done, unavailability of staff, and so on. This is a shared
resource for the whole team, and anyone can change or move items on the board. It
means that any team member can, at a glance, see what others are doing and what
work remains to be done.

At the end of each sprint, there is a review meeting, which involves the whole
team. This meeting has two purposes. First, it is a means of process improvement.
The team reviews the way they have worked and reflects on how things could have
been done better. Second, it provides input on the product and the product state for
the product backlog review that precedes the next sprint.

While the ScrumMaster is not formally a project manager, in practice ScrumMasters
take this role in many organizations that have a conventional management structure.
They report on progress to senior management and are involved in longer-term plan-
ning and project budgeting. They may be involved in project administration (agreeing
on holidays for staff, liaising with HR, etc.) and hardware and software purchases.

In various Scrum success stories (Schatz and Abdelshafi 2005; Mulder and van
Vliet 2008; Bellouiti 2009), the things that users like about the Scrum method are:

1. The product is broken down into a set of manageable and understandable chunks
that stakeholders can relate to.

2. Unstable requirements do not hold up progress.

3. The whole team has visibility of everything, and consequently team communi-
cation and morale are improved.

4. Customers see on-time delivery of increments and gain feedback on how the
product works. They are not faced with last-minute surprises when a team
announces that software will not be delivered as expected.

5. Trust between customers and developers is established, and a positive culture is
created in which everyone expects the project to succeed.

Scrum, as originally designed, was intended for use with co-located teams where
all team members could get together every day in stand-up meetings. However,
much software development now involves distributed teams, with team members
located in different places around the world. This allows companies to take advantage

88 Chapter 3 ■ Agile software development

of lower cost staff in other countries, makes access to specialist skills possible, and
allows for 24-hour development, with work going on in different time zones.

Consequently, there have been developments of Scrum for distributed development
environments and multi-team working. Typically, for offshore development, the prod-
uct owner is in a different country from the development team, which may also be
distributed. Figure 3.10 shows the requirements for Distributed Scrum (Deemer 2011).

	 3.4		 Scaling	agile	methods

Agile methods were developed for use by small programming teams that could work
together in the same room and communicate informally. They were originally used
by for the development of small and medium-sized systems and software products.
Small companies, without formal processes or bureaucracy, were enthusiastic initial
adopters of these methods.

Of course, the need for faster delivery of software, which is more suited to cus-
tomer needs, also applies to both larger systems and larger companies. Consequently,
over the past few years, a lot of work has been put into evolving agile methods for
both large software systems and for use in large companies.

Scaling agile methods has closely related facets:

1. Scaling up these methods to handle the development of large systems that are
too big to be developed by a single small team.

2. Scaling out these methods from specialized development teams to more widespread
use in a large company that has many years of software development experience.

Videoconferencing
between the product
owner and the
development team

Distributed Scrum

The ScrumMaster
should be located with
the development team
so that he or she is
aware of everyday
problems.

The Product Owner
should visit the
developers and try to
establish a good
relationship with them.
It is essential that they
trust each other.

Real-time communica-
tions between team
members for informal
communication,
particularly instant
messaging and video
calls.

Continuous integration,
so that all team
members can be aware
of the state of the
product at any time.

A common development
environment for all teams

Figure 3.10 Distributed
Scrum

 3.4 ■ Scaling agile methods 89

Of course, scaling up and scaling out are closely related. Contracts to develop
large software systems are usually awarded to large organizations, with multiple
teams working on the development project. These large companies have often exper-
imented with agile methods in smaller projects, so they face the problems of scaling
up and scaling out at the same time.

There are many anecdotes about the effectiveness of agile methods, and it has
been suggested that these can lead to orders of magnitude improvements in produc-
tivity and comparable reductions in defects. Ambler (Ambler 2010), an influential
agile method developer, suggests that these productivity improvements are exagger-
ated for large systems and organizations. He suggests that an organization moving to
agile methods can expect to see productivity improvement across the organization of
about 15% over 3 years, with similar reductions in the number of product defects.

 3.4.1 Practical problems with agile methods

In some areas, particularly in the development of software products and apps, agile
development has been incredibly successful. It is by far the best approach to use for
this type of system. However, agile methods may not be suitable for other types of
software development, such as embedded systems engineering or the development
of large and complex systems.

For large, long-lifetime systems that are developed by a software company for an
external client, using an agile approach presents a number of problems.

1. The informality of agile development is incompatible with the legal approach to
contract definition that is commonly used in large companies.

2. Agile methods are most appropriate for new software development rather than
for software maintenance. Yet the majority of software costs in large companies
come from maintaining their existing software systems.

3. Agile methods are designed for small co-located teams, yet much software
development now involves worldwide distributed teams.

Contractual issues can be a major problem when agile methods are used. When
the system customer uses an outside organization for system development, a contract
for the software development is drawn up between them. The software requirements
document is usually part of that contract between the customer and the supplier.
Because the interleaved development of requirements and code is fundamental to
agile methods, there is no definitive statement of requirements that can be included
in the contract.

Consequently, agile methods have to rely on contracts in which the customer
pays for the time required for system development rather than the development of a
specific set of requirements. As long as all goes well, this benefits both the customer
and the developer. However, if problems arise, then there may be difficult disputes
over who is to blame and who should pay for the extra time and resources required
to resolve the problems.

90 Chapter 3 ■ Agile software development

As I explain in Chapter 9, a huge amount of software engineering effort goes into the
maintenance and evolution of existing software systems. Agile practices, such as incre-
mental delivery, design for change, and maintaining simplicity all make sense when soft-
ware is being changed. In fact, you can think of an agile development process as a process
that supports continual change. If agile methods are used for software product develop-
ment, new releases of the product or app simply involve continuing the agile approach.

However, where maintenance involves a custom system that must be changed in
response to new business requirements, there is no clear consensus on the suitability
of agile methods for software maintenance (Bird 2011; Kilner 2012). Three types of
problems can arise:

■ lack of product documentation

■ keeping customers involved

■ development team continuity

Formal documentation is supposed to describe the system and so make it easier
for people changing the system to understand. In practice, however, formal docu-
mentation is rarely updated and so does not accurately reflect the program code. For
this reason, agile methods enthusiasts argue that it is a waste of time to write this
documentation and that the key to implementing maintainable software is to produce
high-quality, readable code. The lack of documentation should not be a problem in
maintaining systems developed using an agile approach.

However, my experience of system maintenance is that the most important docu-
ment is the system requirements document, which tells the software engineer what the
system is supposed to do. Without such knowledge, it is difficult to assess the impact of
proposed system changes. Many agile methods collect requirements informally and
incrementally and do not create a coherent requirements document. The use of agile
methods may therefore make subsequent system maintenance more difficult and expen-
sive. This is a particular problem if development team continuity cannot be maintained.

A key challenge in using an agile approach to maintenance is keeping customers
involved in the process. While a customer may be able to justify the full-time involve-
ment of a representative during system development, this is less likely during mainte-
nance where changes are not continuous. Customer representatives are likely to lose
interest in the system. Therefore, it is likely that alternative mechanisms, such as change
proposals, discussed in Chapter 25, will have to be adapted to fit in with an agile approach.

Another potential problem that may arise is maintaining continuity of the devel-
opment team. Agile methods rely on team members understanding aspects of the
system without having to consult documentation. If an agile development team is
broken up, then this implicit knowledge is lost and it is difficult for new team mem-
bers to build up the same understanding of the system and its components. Many
programmers prefer to work on new development to software maintenance, and so
they are unwilling to continue to work on a software system after the first release has
been delivered. Therefore, even when the intention is to keep the development team
together, people leave if they are assigned maintenance tasks.

 3.4 ■ Scaling agile methods 91

 3.4.2 Agile and plan-driven methods

A fundamental requirement of scaling agile methods is to integrate them with plan-
driven approaches. Small startup companies can work with informal and short-term
planning, but larger companies have to have longer-term plans and budgets for
investment, staffing, and business development. Their software development must
support these plans, so longer-term software planning is essential.

Early adopters of agile methods in the first decade of the 21st century were enthu-
siasts and deeply committed to the agile manifesto. They deliberately rejected the
plan-driven approach to software engineering and were reluctant to change the ini-
tial vision of agile methods in any way. However, as organizations saw the value and
benefits of an agile approach, they adapted these methods to suit their own culture
and ways of working. They had to do this because the principles underlying agile
methods are sometimes difficult to realize in practice (Figure 3.11).

To address these problems, most large “agile” software development projects com-
bine practices from plan-driven and agile approaches. Some are mostly agile, and others
are mostly plan-driven but with some agile practices. To decide on the balance between
a plan-based and an agile approach, you have to answer a range of technical, human and
organizational questions. These relate to the system being developed, the development
team, and the organizations that are developing and procuring the system (Figure 3.12).

Agile methods were developed and refined in projects to develop small to medium-
sized business systems and software products, where the software developer controls
the specification of the system. Other types of system have attributes such as size, com-
plexity, real-time response, and external regulation that mean a “pure” agile approach is

Principle Practice

Customer involvement This depends on having a customer who is willing and able to spend time with
the development team and who can represent all system stakeholders. Often,
customer representatives have other demands on their time and cannot play a
full part in the software development. Where there are external stakeholders,
such as regulators, it is difficult to represent their views to the agile team.

Embrace change Prioritizing changes can be extremely difficult, especially in systems for which
there are many stakeholders. Typically, each stakeholder gives different
priorities to different changes.

Incremental delivery Rapid iterations and short-term planning for development does not always fit
in with the longer-term planning cycles of business planning and marketing.
Marketing managers may need to know product features several months in
advance to prepare an effective marketing campaign.

Maintain simplicity Under pressure from delivery schedules, team members may not have time to
carry out desirable system simplifications.

People, not process Individual team members may not have suitable personalities for the intense
involvement that is typical of agile methods and therefore may not interact
well with other team members.

Figure 3.11 Agile
principles and
organizational practice

92 Chapter 3 ■ Agile software development

unlikely to work. There needs to be some up-front planning, design, and documentation

in the systems engineering process. Some of the key issues are as follows:

1. How large is the system that is being developed? Agile methods are most effective
when the system can be developed with a relatively small co-located team who
can communicate informally. This may not be possible for large systems that
require larger development teams, so a plan-driven approach may have to be used.

2. What type of system is being developed? Systems that require a lot of analysis
before implementation (e.g., real-time system with complex timing require-
ments) usually need a fairly detailed design to carry out this analysis. A plan-
driven approach may be best in those circumstances.

3. What is the expected system lifetime? Long-lifetime systems may require more
design documentation to communicate the original intentions of the system
developers to the support team. However, supporters of agile methods rightly
argue that documentation is frequently not kept up to date and is not of much
use for long-term system maintenance.

4. Is the system subject to external regulation? If a system has to be approved
by an external regulator (e.g., the Federal Aviation Administration approves
software that is critical to the operation of an aircraft), then you will probably be
required to produce detailed documentation as part of the system safety case.

Agile methods place a great deal of responsibility on the development team to
cooperate and communicate during the development of the system. They rely on indi-
vidual engineering skills and software support for the development process. However,
in reality, not everyone is a highly skilled engineer, people do not communicate effec-
tively, and it is not always possible for teams to work together. Some planning may be
required to make the most effective use of the people available. Key issues are:

1. How good are the designers and programmers in the development team?
It is sometimes argued that agile methods require higher skill levels than plan-
based approaches in which programmers simply translate a detailed design into
code. If you have a team with relatively low skill levels, you may need to use
the best people to develop the design, with others responsible for programming.

System Team Organization

Scale

Technology Distribution Contracts Delivery

Regulation

Type Lifetime

Competence Culture

Figure 3.12 Factors
influencing the choice
of plan-based or agile
development

 3.4 ■ Scaling agile methods 93

2. How is the development team organized? If the development team is distributed
or if part of the development is being outsourced, then you may need to develop
design documents to communicate across the development teams.

3. What technologies are available to support system development? Agile methods
often rely on good tools to keep track of an evolving design. If you are develop-
ing a system using an IDE that does not have good tools for program visualiza-
tion and analysis, then more design documentation may be required.

Television and films have created a popular vision of software companies as
informal organizations run by young men (mostly) who provide a fashionable work-
ing environment, with a minimum of bureaucracy and organizational procedures.
This is far from the truth. Most software is developed in large companies that have
established their own working practices and procedures. Management in these
 companies may be uncomfortable with the lack of documentation and the informal
decision making in agile methods. Key issues are:

1. Is it important to have a very detailed specification and design before moving to
implementation, perhaps for contractual reasons? If so, you probably need to
use a plan-driven approach for requirements engineering but may use agile
development practices during system implementation.

2. Is an incremental delivery strategy, where you deliver the software to customers
or other system stakeholders and get rapid feedback from them, realistic? Will
customer representatives be available, and are they willing to participate in the
development team?

3. Are there cultural issues that may affect system development? Traditional engi-
neering organizations have a culture of plan-based development, as this is the
norm in engineering. This usually requires extensive design documentation
rather than the informal knowledge used in agile processes.

In reality, the issue of whether a project can be labeled as plan-driven or agile
is not very important. Ultimately, the primary concern of buyers of a software system
is whether or not they have an executable software system that meets their needs and
does useful things for the individual user or the organization. Software developers
should be pragmatic and should choose those methods that are most effective for the
type of system being developed, whether or not these are labeled agile or plan-driven.

 3.4.3 Agile methods for large systems

Agile methods have to evolve to be used for large-scale software development.
The fundamental reason for this is that large-scale software systems are much
more complex and difficult to understand and manage than small-scale systems
or software products. Six principal factors (Figure 3.13) contribute to this
 complexity:

94 Chapter 3 ■ Agile software development

1. Large systems are usually systems of systems—collections of separate, com-
municating systems, where separate teams develop each system. Frequently,
these teams are working in different places, sometimes in different time zones.
It is practically impossible for each team to have a view of the whole system.
Consequently, their priorities are usually to complete their part of the system
without regard for wider systems issues.

2. Large systems are brownfield systems (Hopkins and Jenkins 2008); that is, they
include and interact with a number of existing systems. Many of the system require-
ments are concerned with this interaction and so don’t really lend themselves to
flexibility and incremental development. Political issues can also be significant
here—often the easiest solution to a problem is to change an existing system.
However, this requires negotiation with the managers of that system to convince
them that the changes can be implemented without risk to the system’s operation.

3. Where several systems are integrated to create a system, a significant fraction of
the development is concerned with system configuration rather than original
code development. This is not necessarily compatible with incremental devel-
opment and frequent system integration.

4. Large systems and their development processes are often constrained by exter-
nal rules and regulations limiting the way that they can be developed, that
require certain types of system documentation to be produced, and so on.
Customers may have specific compliance requirements that may have to be fol-
lowed, and these may require process documentation to be completed.

5. Large systems have a long procurement and development time. It is difficult to
maintain coherent teams who know about the system over that period as, inevi-
tably, people move on to other jobs and projects.

6. Large systems usually have a diverse set of stakeholders with different perspec-
tives and objectives. For example, nurses and administrators may be the end-users
of a medical system, but senior medical staff, hospital managers, and others, are
also stakeholders in the system. It is practically impossible to involve all of
these different stakeholders in the development process.

Large software system

System of
systems

Brownfield
development Diverse

stakeholders

Prolonged
procurement System

configuration

Regulatory
constraints

Figure 3.13 Large
project characteristics

 3.4 ■ Scaling agile methods 95

Dean Leffingwell, who has a great deal of experience in scaling agile methods,
has developed the Scaled Agile Framework (Leffingwell 2007, 2011) to support
large-scale, multi-team software development. He reports how this method has been
used successfully in a number of large companies. IBM has also developed a frame-
work for the large-scale use of agile methods called the Agile Scaling Model (ASM).
Figure 3.14, taken from Ambler’s white paper that discusses ASM (Ambler 2010),
shows an overview of this model.

The ASM recognizes that scaling is a staged process where development teams
move from the core agile practices discussed here to what is called Disciplined Agile
Delivery. Essentially, this stage involves adapting these practices to a disciplined
organizational setting and recognizing that teams cannot simply focus on develop-
ment but must also take into account other stages of the software engineering
 process, such as requirements and architectural design.

The final scaling stage in ASM is to move to Agility at Scale where the com-
plexity that is inherent in large projects is recognized. This involves taking account
of factors such as distributed development, complex legacy environments, and
regulatory compliance requirements. The practices used for disciplined agile
delivery may have to be modified on a project-by-project basis to take these into
account and, sometimes, additional plan-based practices added to the process.

No single model is appropriate for all large-scale agile products as the type of
product, the customer requirements, and the people available are all different.
However, approaches to scaling agile methods have a number of things in common:

Core agile
development

Disciplined
agile delivery

Agility at
scale

Agility at scale
Disciplined agile delivery where

scaling factors apply:
Large team size

Geographic distribution
Regulatory compliance

Domain complexity
Organization distribution

Technical complexity
Organizational complexity

Enterprise discipline

Disciplined agile delivery
Risk+value driven life-cycle

Self-organizing with appropriate
governance framework
Full delivery life-cycle

Core agile development
Value-driven life-cycle
Self-organizing teams
Focus on construction

Figure 3.14 IBM’s
Agility at Scale model
(© IBM 2010)

96 Chapter 3 ■ Agile software development

1. A completely incremental approach to requirements engineering is impossible.
Some early work on initial software requirements is essential. You need this
work to identify the different parts of the system that may be developed by
 different teams and, often, to be part of the contract for the system development.
However, these requirements should not normally be specified in detail; details
are best developed incrementally.

2. There cannot be a single product owner or customer representative. Different
people have to be involved for different parts of the system, and they have to
continuously communicate and negotiate throughout the development process.

3. It is not possible to focus only on the code of the system. You need to do more
up-front design and system documentation. The software architecture has to be
designed, and there has to be documentation produced to describe critical
aspects of the system, such as database schemas and the work breakdown
across teams.

4. Cross-team communication mechanisms have to be designed and used. This
should involve regular phone and videoconferences between team members and
frequent, short electronic meetings where teams update each other on progress.
A range of communication channels such as email, instant messaging, wikis,
and social networking systems should be provided to facilitate communications.

5. Continuous integration, where the whole system is built every time any devel-
oper checks in a change, is practically impossible when several separate
programs have to be integrated to create the system. However, it is essential
to maintain frequent system builds and regular releases of the system.
Configuration management tools that support multi-team software develop-
ment are essential.

Scrum has been adapted for large-scale development. In essence, the Scrum team
model described in Section 3.3 is maintained, but multiple Scrum teams are set up.
The key characteristics of multi-team Scrum are:

1. Role replication Each team has a Product Owner for its work component and
ScrumMaster. There may be a chief Product Owner and ScrumMaster for the
entire project.

2. Product architects Each team chooses a product architect, and these architects
collaborate to design and evolve the overall system architecture.

3. Release alignment The dates of product releases from each team are aligned so
that a demonstrable and complete system is produced.

4. Scrum of Scrums There is a daily Scrum of Scrums where representatives from
each team meet to discuss progress, identify problems, and plan the work to be
done that day. Individual team Scrums may be staggered in time so that repre-
sentatives from other teams can attend if necessary.

 3.4 ■ Scaling agile methods 97

 3.4.4 Agile methods across organizations

Small software companies that develop software products have been among the
most enthusiastic adopters of agile methods. These companies are not constrained by
organizational bureaucracies or process standards, and they can change quickly to
adopt new ideas. Of course, larger companies have also experimented with agile
methods in specific projects, but it is much more difficult for them to “scale out”
these methods across the organization.

It can be difficult to introduce agile methods into large companies for a number of
reasons:

1. Project managers who do not have experience of agile methods may be reluctant
to accept the risk of a new approach, as they do not know how this will affect
their particular projects.

2. Large organizations often have quality procedures and standards that all pro-
jects are expected to follow, and, because of their bureaucratic nature, these are
likely to be incompatible with agile methods. Sometimes, these are supported
by software tools (e.g., requirements management tools), and the use of these
tools is mandated for all projects.

3. Agile methods seem to work best when team members have a relatively high
skill level. However, within large organizations, there are likely to be a wide
range of skills and abilities, and people with lower skill levels may not be effec-
tive team members in agile processes.

4. There may be cultural resistance to agile methods, especially in those organiza-
tions that have a long history of using conventional systems engineering processes.

Change management and testing procedures are examples of company procedures
that may not be compatible with agile methods. Change management is the process of
controlling changes to a system, so that the impact of changes is predictable and costs are
controlled. All changes have to be approved in advance before they are made, and this
conflicts with the notion of refactoring. When refactoring is part of an agile process, any
developer can improve any code without getting external approval. For large systems,
there are also testing standards where a system build is handed over to an external testing
team. This may conflict with test-first approaches used in agile development methods.

Introducing and sustaining the use of agile methods across a large organization is
a process of cultural change. Cultural change takes a long time to implement and
often requires a change of management before it can be accomplished. Companies
wishing to use agile methods need evangelists to promote change. Rather than try-
ing to force agile methods onto unwilling developers, companies have found that the
best way to introduce agile is bit by bit, starting with an enthusiastic group of devel-
opers. A successful agile project can act as a starting point, with the project team
spreading agile practice across the organization. Once the notion of agile is widely
known, explicit actions can then be taken to spread it across the organization.

98 Chapter 3 ■ Agile software development

K e y P o i n t s

■ Agile methods are iterative development methods that focus on reducing process overheads and
documentation and on incremental software delivery. They involve customer representatives
directly in the development process.

■ The decision on whether to use an agile or a plan-driven approach to development should depend on
the type of software being developed, the capabilities of the development team, and the culture of the
company developing the system. In practice, a mix of agile and plan-based techniques may be used.

■ Agile development practices include requirements expressed as user stories, pair programming,
refactoring, continuous integration, and test-first development.

■ Scrum is an agile method that provides a framework for organizing agile projects. It is centered
around a set of sprints, which are fixed time periods when a system increment is developed. Plan-
ning is based on prioritizing a backlog of work and selecting the highest priority tasks for a sprint.

■ To scale agile methods, some plan-based practices have to be integrated with agile practice.
These include up-front requirements, multiple customer representatives, more documentation,
common tooling across project teams, and the alignment of releases across teams.

F u r t h e r 	 r e A d i n g

“Get Ready for Agile Methods, With Care.” A thoughtful critique of agile methods that discusses their
strengths and weaknesses, written by a vastly experienced software engineer. Still very relevant, although
almost 15 years old. (B. Boehm, IEEE Computer, January 2002) http://dx.doi.org/10.1109/2.976920

Extreme Programming Explained. This was the first book on XP and is still, perhaps, the most read-
able. It explains the approach from the perspective of one of its inventors, and his enthusiasm comes
through very clearly in the book. (K. Beck and C. Andres, Addison-Wesley, 2004) Essential Scrum: A
Practical Guide to the Most Popular Agile Process. This is a comprehensive and readable description
of the 2011 development of the Scrum method (K.S. Rubin, Addison-Wesley, 2013).

“Agility at Scale: Economic Governance, Measured Improvement and Disciplined Delivery.” This
paper discusses IBM's approach to scale agile methods, where they have a systematic approach to
integrating plan-based and agile development. It is an excellent and thoughtful discussion of the key
issues in scaling agile (A.W. Brown, S.W. Ambler, and W. Royce, Proc. 35th Int. Conf. on Software
Engineering, 2013) http://dx.doi.org/10.1145/12944.12948

W e b S i t e

PowerPoint slides for this chapter:

www.pearsonglobaleditions.com/Sommerville

Links to supporting videos:

http://software-engineering-book.com/videos/agile-methods/

 3.4 ■ Agile development techniques 99

e x e r C i S e S

 3.1. At the end of their study program, students in a software engineering course are typically
expected to complete a major project. Explain how the agile methodology may be very useful
for the students to use in this case.

 3.2. Explain how the principles underlying agile methods lead to the accelerated development and
deployment of software.

 3.3. Extreme programming expresses user requirements as stories, with each story written on a
card. Discuss the advantages and disadvantages of this approach to requirements description.

 3.4. In test-first development, tests are written before the code. Explain how the test suite may
compromise the quality of the software system being developed.

 3.5. Suggest four reasons why the productivity rate of programmers working as a pair might be
more than half that of two programmers working individually.

 3.6. Compare and contrast the Scrum approach to project management with conventional plan- based
approaches as discussed in Chapter 23. Your comparison should be based on the effectiveness
of each approach for planning the allocation of people to projects, estimating the cost of
 projects, maintaining team cohesion, and managing changes in project team membership.

 3.7. To reduce costs and the environmental impact of commuting, your company decides to close a
number of offices and to provide support for staff to work from home. However, the senior
management who introduce the policy are unaware that software is developed using Scrum.
Explain how you could use technology to support Scrum in a distributed environment to make
this possible. What problems are you likely to encounter using this approach?

 3.8. Why is it necessary to introduce some methods and documentation from plan-based
approaches when scaling agile methods to larger projects that are developed by distributed
development teams?

 3.9. Explain why agile methods may not work well in organizations that have teams with a wide
range of skills and abilities and well-established processes.

3.10. One of the problems of having a user closely involved with a software development team is
that they “go native.” That is, they adopt the outlook of the development team and lose sight
of the needs of their user colleagues. Suggest three ways how you might avoid this problem,
and discuss the advantages and disadvantages of each approach.

r e F e r e n C e S

Ambler, S. W. 2010. “Scaling Agile: A Executive Guide.” http://www.ibm.com/developerworks/
community/blogs/ambler/entry/scaling_agile_an_executive_guide10/

Arisholm, E., H. Gallis, T. Dyba, and D. I. K. Sjoberg. 2007. “Evaluating Pair Programming with
Respect to System Complexity and Programmer Expertise.” IEEE Trans. on Software Eng. 33 (2):
65–86. doi:10.1109/TSE.2007.17.

Beck, K. 1998. “Chrysler Goes to ‘Extremes.’” Distributed Computing (10): 24–28.

 Chapter 3 ■ References 99

100 Chapter 3 ■ Agile Software Development

 . 1999. “Embracing Change with Extreme Programming.” IEEE Computer 32 (10): 70–78.
doi:10.1109/2.796139.

Bellouiti, S. 2009. “How Scrum Helped Our A-Team.” http://www.scrumalliance.org/community/
articles/2009/2009-june/how-scrum-helped-our team

Bird, J. 2011. “You Can't Be Agile in Maintenance.” http://swreflections.blogspot.co.uk/2011/10/
you-cant-be-agile-in-maintenance.html

Deemer, P. 2011. “The Distributed Scrum Primer.” http://www.goodagile.com/distributedscrumprimer/.

Fowler, M., K. Beck, J. Brant, W. Opdyke, and D. Roberts. 1999. Refactoring: Improving the Design of
Existing Code. Boston: Addison-Wesley.

Hopkins, R., and K. Jenkins. 2008. Eating the IT Elephant: Moving from Greenfield Development to
Brownfield. Boston: IBM Press.

Jeffries, R., and G. Melnik. 2007. “TDD: The Art of Fearless Programming.” IEEE Software 24: 24–30.
doi:10.1109/MS.2007.75.

Kilner, S. 2012. “Can Agile Methods Work for Software Maintenance.” http://www.vlegaci.com/can-
agile-methods-work-for-software-maintenance-part-1/

Larman, C., and V. R. Basili. 2003. “Iterative and Incremental Development: A Brief History.” IEEE
Computer 36 (6): 47–56. doi:10.1109/MC.2003.1204375.

Leffingwell, D. 2007. Scaling Software Agility: Best Practices for Large Enterprises. Boston: Addison-Wesley.

Leffingwell, D. 2011. Agile Software Requirements: Lean Requirements Practices for Teams,
Programs and the Enterprise. Boston: Addison-Wesley.

Mulder, M., and M. van Vliet. 2008. “Case Study: Distributed Scrum Project for Dutch Railways.”
InfoQ. http://www.infoq.com/articles/dutch-railway-scrum

Rubin, K. S. 2013. Essential Scrum. Boston: Addison-Wesley.

Schatz, B., and I. Abdelshafi. 2005. “Primavera Gets Agile: A Successful Transition to Agile Develop-
ment.” IEEE Software 22 (3): 36–42. doi:10.1109/MS.2005.74.

Schwaber, K., and M. Beedle. 2001. Agile Software Development with Scrum. Englewood Cliffs, NJ:
Prentice-Hall.

Stapleton, J. 2003. DSDM: Business Focused Development, 2nd ed. Harlow, UK: Pearson Education.

Tahchiev, P., F. Leme, V. Massol, and G. Gregory. 2010. JUnit in Action, 2/e. Greenwich, CT: Manning
Publications.

Weinberg, G. 1971. The Psychology of Computer Programming. New York: Van Nostrand.

Williams, L., R. R. Kessler, W. Cunningham, and R. Jeffries. 2000. “Strengthening the Case for Pair
 Programming.” IEEE Software 17 (4): 19–25. doi:10.1109/52.854064.

100 Chapter 3 ■ Agile software development

