9/5/2018 Introduction to JUnitParams | Baeldung

1. Overview

In this article, we’ll explore the JUnitParams library and its usages. Simply put, this library
provides easy parameterization of test methods in JUnit tests.

There are situations where the only thing that changes between multiple tests are the
parameters. JUnit itself has a parameterization support, and JUnitParams significantly
improves on that functionality.

2. Maven Dependency

To use JUnitParams in our project, we need to add it to our pom.xm!:

<dependency>
<groupId>pl.pragmatists</groupId>
<artifactId>JUnitParams</artifactId>
<version>1.1.0</version>
</dependency>

The latest version of the library can be found here.

3. Test Scenario

Let’s create a class which does the safe addition of two integers. This should
return Integer MAX VALUE if it overflows, and Integer MIN VALUE if it underflows:

public class SafeAdditionUtil {

public int safeAdd(int a, int b) {
long result = ((long) a) + b;
if (result > Integer.MAX VALUE) {
return Integer.MAX VALUE;
} else if (result < Integer.MIN VALUE)
return Integer.MIN VALUE;
}

return (int) result;

https://www.baeldung.com/junit-params 1/6


https://github.com/Pragmatists/JUnitParams
https://search.maven.org/classic/#search%7Cgav%7C1%7Cg%3A%22pl.pragmatists%22%20AND%20a%3A%22JUnitParams%22

9/5/2018 Introduction to JUnitParams | Baeldung

|

4. Constructing a Simple Test Method

We’ll need to test method implementation for different combinations of input values, to make
sure the implementation holds true for all possible scenarios. JUnitParams provides more than
one way to achieve the parameterized test creation.

Let’s take the basic approach with a minimal amount of coding and see how it is done. After
that, we can see what the other possible ways of implementing the test scenarios using
JUnitParams are:

@RunWith (JUnitParamsRunner.class)
public class SafeAdditionUtilTest {

private SafeAdditionUtil serviceUnderTest
= new SafeAdditionUtil();

@Test
@Parameters ({
"1, 2, 3",
"-10, 30, 20",
"15, -5, 10",
"-5, -10, -15" })
public void whenWithAnnotationProvidedParam
int a, int b, int expectedValue) {

assertEquals (expectedValue, serviceUnde

Now let’s see how this test class differs from a regular JUnit test class.

The first thing we notice is that there is a different test runner in the class annotation —
JUnitParamsRunner.

Moving on to the test method, we see the test method is annotated
with @Parameters annotation with an array of input parameters. It indicates different test
scenarios which will be used for testing our service method.

If we run the test using Maven, we’ll see that we are running four test cases and not a single
one. The output would be similar to the following:

https://www.baeldung.com/junit-params

2/6



9/5/2018 Introduction to JUnitParams | Baeldung

Running com.baeldung.junitparams.SafeAdditionUt
Tests run: 4, Failures: 0, Errors: 0, Skipped:

- in com.baeldung.junitparams.SafeAdditionUti

Results :

Tests run: 4, Failures: 0, Errors: 0, Skipped:
< >

5. Different Types of Parameterization of Test Methods

Providing test parameters directly in the annotation is certainly not the most readable way if we
have lots of possible scenarios that need to be tested. JUnitParams ofters a set of different
approaches we can utilize to create the parameterized tests:

e Directly in the @Parameters annotation (used in the example above)
Using a named test method defined within the annotation

Using a method mapped by test method name

A named test class defined within the annotation

Using a CSV file

Let’s explore the approaches one by one.

5.1. Directly in the @ParametersAnnotation

We have already used this approach in the example we tried. What we need to keep in mind is
that we should be providing an array of parameter strings. Within the parameter string, each
parameter is separated by a comma.

For example, the array would be in the form of { “/, 2, 3”, “-10, 30, 20"’} and one set of
parameters is represented as “/, 2, 3.

The limitation of this approach is that we can only supply primitives and Strings as test
parameters. It is not possible to submit objects as test method parameters as well.

5.2. Parameter Method

We can provide the test method parameters using another method within the class. Let’s see an
example first:

https://www.baeldung.com/junit-params 3/6



9/5/2018

The test method is annotated concerning the method parametersToAdd(), and it fetches the

Introduction to JUnitParams | Baeldung

@Test

@Parameters (method = "parametersToTestAdd")

public void whenWithNamedMethod thenSafeAdd (
int a, int b, int expectedValue) {

assertEquals (expectedValue, serviceUnderTes

private Object[] parametersToTestAdd() {
return new Object[] {
ll 2/ 3 }I

new Object[] {
{ -10, 30, 20 },
{
{

new Object
Integer.MAX VALUE, 2, In

[]
new Object[]
[] Integer.MIN VALUE, -8, I

new Object
bi

parameters by running the referenced method.

The specification of the provider method should return an array of Objects as a result. If a
method with the given name is not available, the test case fails with the error:

I java.lang.RuntimeException: Could not find metho

»

5.3. Method Mapped by Test Method Name

If we do not specify anything in the (@Parametersannotation, JUnitParams tries to load a test
data provider method based on the test method name. The method name is constructed

as “parametersFor”+ <test method name>:

@Test

@Parameters

public void whenWithnoParam thenLoadByNameSafeA
int a, int b, int expectedValue) {

assertEquals (expectedValue, serviceUnderTes

private Object[] parametersForWhenWithnoParam t
return new Object[] {
1, 2, 3},

new Object[] {
{ -10, 30, 20 1},
{
{

new Object
Integer.MAX VALUE, 2, In

[]
new Object]]
[1] Integer .MIN VALUE, -8, I

new Object

https://www.baeldung.com/junit-params

4/6



9/5/2018
b

In the above example the name of the test method

Introduction to JUnitParams | Baeldung

1s whenWithnoParam_shouldLoadByNameAbdSafeAdd().

Therefore when the test method is being executed, it looks for a data provider method with the
name parametersForWhenWithnoParam_shouldLoadByNameAbdSafeAdd|).

Since that method exists, it will load data from it and run the test. If there is no such method
matching the required name, the test fails as in the above example.

5.4. Named Test Class Defined Within the Annotation

Similar to the way we referred to a data provider method in a previous example, we can refer

to a separate class to provide the data for our test:

@Test

@Parameters (source

int a, int b, int expectedValue) {

new Object[] {

Integer .MAX VALUE, 2,
new Object[] {
Integer.MIN VALUE, -2,

https://www.baeldung.com/junit-params

TestDataProvider.class)
public void whenWithNamedClass thenSafeAdd(

assertEquals (expectedValue, serviceUnderTes
}
public class TestDataProvider ({
public static Object[] provideBasicData () {
return new Object[] {
new Object[] { 1, 2, 3 1},
new Object[] { -10, 30, 20 1},
new Object[] { 15, -5, 10 },
new Object[] { -5, -10, -15 1}
}i
}
public static Object[] provideEdgeCaseData (
return new Object[] {

Integer.MAX

Integer.MI

5/6



9/5/2018 Introduction to JUnitParams | Baeldung

We can have any number of test data providers in a class given that the method name starts
with “provide”. If so, the executor picks those methods and returns the data.

If no class methods are satisfying that requirement, even though those methods return an array
of Objects, those methods will be ignored.

5.5. Using a CSV File

We can use an external CSV file to load the test data. This helps if the number of possible test
cases is quite significant, or if test cases are frequently changed. The changes can be done
without affecting the test code.

Let’s say that we have a CSV file with test parameters as JunitParamsTestParameters.csv:

1,2,3

-10, 30, 20
15, -5, 10
-5, -10, -15

Now let’s look how this file can be used to load test parameters in the test method:

@Test
@FileParameters ("src/test/resources/JunitParamsT
public void whenWithCsvFile thenSafeAdd(

int a, int b, int expectedvValue) {

assertEquals (expectedValue, serviceUnderTest

One limitation of this approach is that it is not possible to pass complex objects. Only
primitives and Strings are valid.

https://www.baeldung.com/junit-params

6/6



