! Unit Testing in Python

James Brucker

Python Unit Test Libraries

Doctest - testable examples in docstring comments

Jnittest - the standard test library, based on JUnit

Pytest - simple yet powerful package for concise
tests. Can execute doctests & unittests, too.

Libraries to Enhance Tests

Mock objects - "fake" objects for external components
- also called "test doubles™

Hamcrest - declarative rules of "intent" to help write
readable, powerful matching rules for tests.

unittest example

import unittest class extends TestCase

.

class TestBuiltins (unittest.TestCase) :

HHHTeSt some python bU_llJ_ S ann + 1 ~ ~ YV ¥V VY
R Test method name must
def test len(self): begin with test

self.assertEqual (5, len("hello"))
self.assertEqual (7, len(" el 1lo "))
self.assertEqual (0, len("")) # edge case

def test isupper (self):
self.assertTrue("ABC".isupper ())
self.assertFalse("ABc".isupper ())

How to Write an "assert"

docstring will be

sh0\<n on test output expected result actual result

\\fo test len(self):

"""length of a st&ing is number of chars"""
self.assertEqual (5, len("hello"))

should be True
def test isupper (self):

self.assertTrue("ABC".1isupper ())

self.assertFalse ("ABc"miiupper())

N\
should be False

Run tests from the command line

Run all tests or just specific tests.

cmd> python -m unittest test module
cmd> python -m unittest tests/test module.py

print verbose test results
cmd> python -m unittest -v test module

auto-discovery: run all test *.py files
cmd> python -m unittest

print help
cmd> python -m unittest -h

Other Ways to Run tests

1. Use your IDE run the tests.
2. Use a test script or build tool.

3. Add a "main" block to your Test file...

import unittest

if name == " main

unittest.main|() # or unittest.main (verbose=2)

Exercise: Try it Yourself

Test math.sqrt() and math.pow().

import unittest
import math

class MathTest (unittest.TestCase) :
def test sqrt(self):
self.assertEqual (5, math.sqrt (25))
self.assertEqual (0, math.sqrt(0)) f#edge case

def test pow(self):
#TODO Write 1 or 2 tests of math.pow(x,n)

Exercise: Run Your Tests

Run on the command line:

cmd> python -m unittest test math

Ran 2 tests in 0.001s

Run with verbose (-v) output

cmd> python -m unittest -v test math.py
test sqrt (test math.MathTest) ... ok
test pow (test math.MathTest) ... ok

Ran 2 tests in 0.001s

Exercise: Write two Faliling Tests

import unittest
import math

class MathTest (unittest.TestCase) :
This answer is WRONG. Test should fail.
def test wrong sqrt(self):
self . assertEqual (10.0, math.sqrt(100.000001))

This is ILLEGAL. Cannot sqrt a negative value.
def test sqrt of negative (self):
self.assertEqual (-4, math.sqrt(-16))

Exercise: Run the Tests

Run on the command line:

[\ [\

python -m unittest math test.py
. .EF
ERROR: test sqrt of negative (math test.MathTest)

Traceback (most recent call last):
File "test math.py", line 10, in test sqrt negative
self.assertEqual (4, math.sqrt(-16))
ValueError: math domain error

FAIL: test wrong sqrt (test math.MathTest)
Trackback (most recent call last):
AssertionError: 1 '= 5.0

Test Results

At the end, unittest prints:

Ran 4 tests in 0.001s
FAILED (failures=l, errors=l)

How are "failure" and "error" different?

Failure means a test condition (assertion) failed

assertEquals(except, actual)
fail("it didn't work™")
expected an exception, but exception not raised

Error means some code caused an error

Tests Outcomes

Success: passes all "assert"

Failure: fails an "assert" but code runs OK

Error: error while running test, such as exception raised

What Can You assert?

assertTrue(gcd(-3,-5) > 0)
assertFalse("hello".isupper())
assertEqual(9, math.pow(3,2))
assertNotEqual("a", "b")

assertIsNone (a) # test "a is None"
assertIsNotNone (a) # test "a is not None"
assertIn(a, list) # test "a in list"

assertIsInstance (3, int) # test 3 in an "int"

assertlListEqual (listl, 1list2) # all elements equal

Many more!
See "unittest" in the Python Library docs.

Use the Correct assert

Use the 'assert' that matches what you want to test.
Good asserts (matches what you want to verify):

assertEqual(5, math.sqrt (25))
assertGreater(math.pi, 3.14159)

assertNotIn('a', ['yes',6 'no', 'maybe'])

Don't write this:

assertTrue (5 == math.sqrt(25))
assertIs (math.pi > 3.14159, True)
assertTrue(math.pi > 3.14159)

assertFalse('a' in ['yes',6 'no', 'maybe'])

Test involving Floating Point

Calculations using floating point often result in
rounding error Or precision error.

Try this:

>>> 2.0 - 1.1 == 0.9

True or False?

Tests for Floating Point

Use assertAlmostEqual to test a result which may
have rounding error:

1) assertAlmostEqual(a, b, places=n) tests |a-b|<10™

self.assertAlmostEqual (
1.33333, 4.0/3.0, places=5)

2) assertAlmostEqual(a, b, delta=d) tests |a-b | <=d

delta allowed difference in values
self.assertAlmostEqual (

0.33333, 1.0/3.0, delta=0.00001)

Skip a Test or Fail a Test

import unittest

class MyTest (unittest.TestCase):

@unittest.skip ("Not done yet")
def test add fractions(self):

pass

def test fraction constructor(self):

self.fail ("Write this test!")

Test for Exception

What 1f your code should throw an exception?

def test sqrt of negative(self):

"""sqgrt of a negative number should throw

ValueError.

self.assert????(math.sqrt(-1))

Test for Exception

assertRaises expects a block of code to raise an
exception:

def test sqrt of negative (self):
with self.assertRaises (ValueError) :

x = math.sqrt(-1)

Exercise: use assertRaises

Add assertRaises expects to your sqrt test:

def test sqrt of negative (self):
with self.assertRaises (ValueError) :
result = math.sqrt(-1)
result2 = math.log(-4) # not reached

Can we do this?

assertRaises with extra argument:

def test sqrt of negative(self):

self . assertRaises (ValueError, math.sqrt(-1))

This doesn't work.

A ValueError exception is thrown (the test fails).

Which Operation is Done 1st, 2nd, ..?

print("sgrt 5 + 1 is", 1 + math.sqrt(5))

Which operation is done first?

def test sqrt of negative(self):

self.assertRaises (ValueError, math.sqrt(-1))

Python evaluates math.sqrt(-1) before calling
assertRaises.

So 1t raises an uncaught exception.

The Python Docs State:

assertRaises(exception, callable, *args, **kwargs)

What is a callable?

Something that you can call. :-)

Example: a function, a lambda expression

Use a callable in assertRaises

assertRaises with callable:

def test sqrt of negative(self):
_1)

/

self . assertRaises (ValueError, math.sqrt,

/

*args passed to the callable

Don't test multiple exceptions in one
"assertRaises" block

The Cash class constructor should raise exception if
a) value (1st param) 1s negative
b) currency (2nd param) is an empty string

This test will fail to detect some errors. Why?

def test cash constructor(self):
with self.assertRaises (ValueError) :
cl = Cash(-1, "Baht")
c2 Cash (10, "")

What to Name Your Tests?

1. Test methods begin with test and use snake case.

def test sqrt(self)

def test sqrt of negative value(self)

2. Test class name either starts with Test (Python style)
or ends with "Test" (JUnit style). Use CamelCase.

class TestMath (unittest.TestCase)

class MathTest (unittest.TestCase)

What to Name Your Tests?

3. Test filename should start with test & use snake
case

test math.py
test list util.py or test listutil.py

Note:

If test flename ends with _test like math test.py
then Python's "test discovery" feature won't discover
the tests unless you use -p ("pattern”).

python -m unittest -p "* test.py"

Test setUp for a Stack test

A Stack implements common stack data structure.

Throws StackException if you do something stupid.

Stack

Stack (capacity)
capacity(): int
size(): int
isEmpty() : boolean
isFull(): boolean
push(T): void
pop(): T

peek(): T

+ + + + + + + +

Stack Tests all Need a Stack

In each test creates a new stack.

That's a lot of duplicate code.

How to eliminate duplicate code?

def test new stack is empty(self):
stack = Stack (5)
self.assertTrue(stack.isEmpty ())

def test push and pop(self):
stack = Stack (5)
stack.push ("foo™")
self.assertEqual ("foo", stack.pop())
self.assertTrue(stack.isEmpty ())

Use setUp() to create test fixture

setUp() is called before each test.

import unittest

class StackTest (unittest.TestCase) :

Create a new test fixture before each test

def setUp(self):
self.capacity = 5

self.stack = Stack(capacity)

def test new stack is empty(self):
self.assertTrue(self.stack.isEmpty ())
self.assertFalse(self.stack.isFull())
self.assertEqual (0, self.stack.size ())

In unit testing, what is setUp() ?

What is the purpose of setUp?

* create a "test fixture" containing objects or whatever
your tests need

* avoids redundant code in many tests
* TestCase invokes setUp before each test.

* "setUp" (or equivalent) is available in Unittest, Pytest,
JUnit, and other xUnit frameworks.

How to clean up after each test ?

Example: you read test data from a file.
You should close the file after each test.
Example: your tests write data to a file.

You want to delete the file after each test.

Solution:

tearDown (self) is called after each test.

Use tearDown() to clean up after test

tearDown() is called after each test. Its not usually
needed, since setUp will re-initialize a test fixture.

class FileTest (unittest.TestCase) :

def setUp (self):
open file containing test data
self.file = open("testdata", "r")

def tearDown (self) :
try:
self.file.close()
except Exception:
pass

setUp Done Once Per Run

There is a method you can use to initialize the TestCase
class before any tests are run.

This is done only once and its a class method.

Example: open a database or network connection one
time before running any of the tests.

What is the method?
@classmethod
def setUpClass(cls):
perform initialization for this

test suite.

Doctest

Include runnable code inside Python DocStrings.

Provides example of how to use the code
and executable tests!

def average(lst):
"""Return the average of a list of numbers.

>>> average ([2, 4, 0, 4]) doctest
2.5 comments
>>> average ([5])

.................... 5.0

return sum(lst)/len(lst)

Running Doctest

Run doctest using command line:

cmd> python -m doctest -v listutil.py
2 tests 1n 5 1tems.

2 passed and 0 failed.

Test passed.

Or run doctest in the code:

if name == " main ":

import doctest
doctest. testmod (verbose=True)

Doctest for Exception

Use ". . ." to indicate omitted lines of output.
The test passes if the exception is raised.

def average(lst):
"""Return average of a list of numbers.

>>> average([])
Traceback (most recent call last):

ValueError: list must not be empty

wiiw

if len(lst) ==
raise ValueError ("list must not be empty")
return sum(lst)/len(lst)

Testing is Not So Easy!
These examples are trivial tests to show the
syntax.

Real tests are more thoughtful and demanding.

Designing good tests makes you think about what
the code should do, and what may go wrong.

Good tests are often short... but many of them.

References

Python Official Docs - easy to read, many examples
https://docs.python.org/3/library/unittest.html
Good article & how to run unit tests in an IDE
https://realpython.com/python-testing/
Video shows how to use unittest

https://youtu.be/6tNS--WetLI

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

