

Web Application Testing in Python

With an Intro to the Testing Pyramid

and E2E Testing Tools

Guidance

What to Test?

 Application conforms to the requirements

 Logic

 Flow Control

 Application Flow, e.g. Page Flow

 Configuration

"Don't test Constants", e.g. HTML template text

Test your code, not the framework

Testing Parts of a Web App

How can we automate

testing of each of these?

Model

Controller
(django view)

UI
(web page)

url dispatcher

Models: test using standard unit tests

import django.test
from polls.models import Question

class QuestionTest(django.test.TestCase):
 def test_question_with_future_date(self):
 tomorrow = timezone.now() +
 datetime.timedelta(days=1)
 question = Question(question_text=
 "Is this the future?", pub_date=tomorrow)
 # future date is not "recent"
 self.assertFalse(
 question.was_published_recently())

Not necessary to test the framework
import django.test
from polls.models import Question

class QuestionTest(django.test.TestCase):
 def setUp(self):
 Question.objects.create(
 question_text="Question One")
 Question.objects.create(
 question_text="Question Two")

 def test_create_questions(self):
 self.assertEqual(2, Questions.objects.count())

What is Being Tested? (cont'd)
 def test_question_text(self):
 self.assertTrue(
 any("Question One" in q.question_text
 for q in Questions.objects.all())

This is testing Django's persistence framework.

OK to do it occasionally while learning Django.

But its not a useful test of your code.

Test Views and URLs
Use django.test.Client to experiment

$ python manage.py shell
>>> from django.test import Client

>>> c = Client()

Get the /polls/ page. Should contain some polls

>>> response = c.get('/polls/')

Did it succeed?

>>> response.status_code

200

Print the html content

>>> response.content

'<html>\n<head>\n<style>...\n<h1>Active Polls</h1>...

Testing Django Views and URLs
class TestViews(django.test.TestCase):

 def setUp(self):

 super().setUp()

 self.client = django.test.Client()

 def test_polls_index(self):

 poll = Question(question_text="ABCDEFGHIJ",...)

 poll.save()

 response = self.client.get('/polls/')

 self.assertEqual(response.status_code, 200)

 # Is test poll included in the page?

 self.assertContains(response, "ABCDEFGHIJ")

Rewrite the Test using reverse()

from django.urls import reverse

def test_polls_index(self):

 poll = Question(question_text="ABCDEFGHIJ",...)

 poll.save()

 url = reverse('polls:index')

 response = self.client.get(url)

 self.assertEqual(response.status_code, 200)

 # Is test poll included in the page?

 self.assertContains(response, "ABCDEFGHIJ")

Instead of writing "/polls/" URL as a String, use
reverse() to get the URL by name from urls.py.

Test the / URL is Redirected

 def test_redirect_root_url(self):

 """root url should redirect to polls index"""

 response = self.client.get('/')

 # Test using the basic way

 self.assertEqual(response.status_code, 302)

 polls_url = reverse('polls:index')

 self.assertEqual(response.url, polls_url)

 # Better way: use TestCase assertRedirects

 self.assertRedirects(response, polls_url)

Test that 'GET /' redirects the browser to polls index.

Explore Tests using Django Shell

If you are not sure how to test, use Django Shell to try it

>>> tc = django.test.TestCase()

>>> client = django.test.Client()

The root url / should redirect to polls

>>> response = client.get('/')

>>> tc.assertRedirects(response, '/polls/')

"Location" header field is the redirect url

>>> assert response.get('Location') == '/polls/'

Useful django.test.TestCase asserts

the response contains some text

assertContains(response, "some text")

assertNotContains(response, "bad text")

response is a redirect to some url

assertRedirects(response, url)

response uses a template we expect

assertUsesTemplate(response,
 'polls/detail.html')

Useful Info in HttpResponse

client.get() or client.post() return an HttpResponse obj.

response = client.get('/polls/')

response attributes:

status_code - the HTTP status code (200 = OK, etc.)

request - the HttpRequest that caused this response

templates - a list of templates used in the response

content - body of the response, as a byte-string

context - the context that was used to render the
template; context contains a key-value map.

Where is the info for TestCase?

How do you know what TestCase and Client can do?

See the "Django Testing Tools" page.

https://docs.djangoproject.com/en/3.1/
topics/testing/tools/

The asserts are buried near the bottom of the page, in
section "Assertions".

How to Test a Template?
def test_polls_index(self):

 poll = Question(question_text="ABCDEFGHIJ",...)

 poll.save()

 response = self.client.get('/polls/')

 self.assertTemplateUsed(response,

 template_name='polls/index.html')

You can test POST, too
Vote for a poll.

This example assumes you somehow know the poll

id is 1. Send POST data as a Python dictionary.

response =

 self.client.post('/polls/1/', {'choice': '2'})

What should POST return? (Should redirect)

Test that the vote was recorded in choice.

Test an invalid choice

response2 =

 self.client.post('/polls/1/', {'choice': '9999'})

Are Unit Tests Enough?

No.

Unit tests don't verify that the application works.

The Testing Pyramid

Mike Cohen's original Pyramid

"Practical" pyramid

Integration Testing

Test the interaction between components.
 Components belonging to your app

 Back-end services called by front-end

 External components and web services

Examples:

 database

 file system used to save user uploaded files

 a Google API used by your app

How to Test:

- often access a "service layer" or your standard URLs.

Functional or "End-to-End" Tests

Test the "development" or "production" app
while its running! -- not a 'test' server.

Run tests through an actual web browser.

Test the application as a whole.

Goals of E2E Testing

1. Verify the application works "from start to
finish".

2. Can perform the major use cases (user
stories) via the browser interface.

- called "happy path" (nothing goes wrong)

3. Test that required services work, too.

Goal is not comprehensive testing of every
feature.

Secondary Use of E2E Tests

Useful to verify all links, buttons, and menu items work.

No "404" or "5xx" errors.

E2E Testing Tools

Selenium - control an actual web browser using code.
 Interface in many languages, incl. Python & Java
 Django has built-in support
 Selenium IDE for creating tests in a web browser

Cypress.io - Javascript testing tool. Natively interacts
with pages in your application.

– uses Mocha and Chai for writing tests
– tests written in Javascript

Puppeteer - library for controlling a "headless" Chrome
browser. Uses Javascript and node.js.

 uses: page scraping, web crawling, testing

Human Readable Test Automation

robotframework.org - write tests in plain English

Web testing, GUI testing, process automation,

and other applications.

robotframework example

Test that a login succeeds.

See: https://robotframework.org/#examples

*** Settings ***
Documentation A single test for valid login.
... workflow that is created using keywords in:
Resource resource.txt

*** Test Cases ***
Valid Login
 Open Browser To Login Page
 Input Username demo
 Input Password fatchance
 Submit Credentials
 Welcome Page Should Be Open
 [Teardown] Close Browser

References

The Practical Test Pyramid

https://martinfowler.com/articles/
 practical-test-pyramid.html

8 Best Testing Frameworks for Python

Article by a developer at TestProject.io

https://blog.testproject.io/2020/10/27/
 top-python-testing-frameworks/

including RobotFramework, Behave, PyTest, and
unittest

Django E2E Tests with Selenium

Test-Driven Development in Python (online book)

Several chapters use Selenium for E2E testing of the
Django project in the book.

Testing the Github Public API

https://developer.github.com/v3/users/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

