
Typing and Type Hints Practice

1. Complete this table.
Answers to these questions are in the Python typing and collections.abc documentation pages.

In the "Example use" column, assume that x refers to an object that provides the Type in the left column.
As an example, for Sized type:
 # string is a Sized type
 x = "strings have length"

Type Provides methods Example use (*)

__call__() x = MyCallable()
x()

Sized len(x)

__next__() while True:
 print(next(x))

__iter__() # 2 typical uses that do not
explicitly call iter()

"apple" in x

combines 3 types:
"apple" in x # True or False
len(x)
[print(item) for item in x]

__getitem__()
__len__()

x[2]
x["foo"]
Name the most basic type that specifies this
behavior

2. We have a Scorecard class that creates an iterator. How can we specify that the iterator always produces
float values?

 class Scorecard():

 def __init__(self, name):

 self.name = name

 self.scores = []

3. Fill in the blanks with correct types. Use the most specific type that applies

in actual use, type hints aren't need in assignments like this

today: = datetime.today()

weekend: = today.isoweekday()==0 or today.isoweekday()==6

average expects the values to be float or int

Number = __________[,]

The average of some items.

"items" can be anything that we can sum and has a length.

This includes: a list, set, tuple, and more

def average(items:) -> :

 return sum(items)/max(1, len(items))

Get a mapping of sizes to price

def prices() -> :

 price_by_size = { "small": 25.0, "medium": 35.0, "large": 45.0 }

 return price_by_size

4. Add type hints to the code below.

class Product:
 """A kind of item that the store sells, e.g Nescafe Ice Coffee."""

 def __init__(self, product_id: ______,
 description: _____,
 price: _________):
 self.id: str = product_id
 self.description = description
 self.unit_price = price

class LineItem:
 """LineItem represents the purchase of a product, with a quantity"""

 def __init__(self, product: _______, quantity: ______ = 1):
 self.product = product
 self.quantity = quantity

 def get_total(self) ____________:
 return self.product.unit_price * self.quantity

 def __str__(self) ____________:
 return self.product.description

class Sale(_______________________):
 """A sale of a collection of items"""
 def __init__(self):
 self.items: __________________ = []

 def add_item(self, item: ____________):
 """Add a LineItem to this sale"""
 self.items.append(item)

 def total(self) ____________:
 total_price = sum(item.get_total() for item in self.items)
 tax = TaxCalc.get_tax(total_price)
 return total_price + tax

 def __iter__(self):
 return iter(self.items)

 def __len__(self):
 return len(self.items)

class TaxCalc:
 # tax rate is a static (class) value
 TAX_RATE = 0.07

 @classmethod
 def get_tax(cls, amount: __________) ______________:
 """compute the tax on given amount"""
 return cls.TAX_RATE * amount

5. Refactoring:

In some countries, the tax rate depends on the kind of item. Food is often not taxed and luxury
items are taxed at a higher rate.

a) How would you modify TaxCalc to make this sort of tax calculation possible?

b) What is the name of the refactoring?

