

Relationships in UML Class Diagrams

Some examples using Java

Exercise: draw the UML

class Person {
private String firstName;
private String lastName;
private Company employer;
...

}

A Person works for one company.

Unidirectional Association

class Person {
private String firstName;
private String lastName;
private Company employer;
...

}

A Person works for one company.

Association or Attribute?

class Person {
private String firstName;
private String lastName;
private Date birthdate;
private Company employer;
...

}

Should birthdate be an attribute or association to the Date class?

Association or Attribute?

class Person {
private String firstName;
private String lastName;
private Date birthdate;
private Company employer;
...

}

For uninteresting objects like String and Date, show as attribute.

Multiplicity of Association

class Person {
private String firstName;
private String lastName;
private Date birthdate;
private Company employer; // may be null
...

}

A person works for 0 or 1 company, a company has many employees.

Multiplicity of Association

class Person {
private String firstName;
private String lastName;
private Date birthdate;
private Company employer;
...

}

A person works for 0 or 1 company, a company has many employees.

Bidirectional Association

class Company {
private String name;
private Address address;
private Set<Person> employees;
public static Company getInstance();

}

A company has a collection (e.g. Set) of employees (no duplicates).

Bidirectional Association

class Company {
private String name;
private Address address;
private Set<Person> employees;
public static Company getInstance();

}

A company has a collection (e.g. Set) of employees (no duplicates).

Composition: owning a collection

public class World {
private [][] Cell cells;
public World(int width, int height, int sz)
{

if (width<1 || height<1) throw new ...;
cells = new Cell[width][height];

}

A Greenfoot World "owns" the cells in the world.

Composition: owning a collection

public class World {
private [][] Cell cells;
public World(int width, int height, int sz)
{

if (width<1 || height<1) throw new ...;
cells = new Cell[width][height];

}

A Greenfoot World "owns" the cells in the world.

Collection can be array, list, set, ...

public class World {
private List<Actor> actors;
public void addObject(Actor a, int x, int y)
{

if (! actors.contains(a)) actors.add(a);
else actors.add(a); a.setLocation(x,y);

}

A greenfoot World "owns" the actors in the world.

Exercise: draw the class diagram

Association to what?

A person has a mother and father.

public class Person {
private String firstName;
private String lastName;
private Person father;
private Person mother;
...

}

Self-Association

A person has a mother and father.

public class Person {
private String firstName;
private String lastName;
private Person father;
private Person mother;
...

}

Implementing an Interface

A Person can be compared to another Person.

public class Person implements Comparable<Person> {
private String firstName;
private String lastName;
private Date birthdate;

public int compareTo(Person other) {
if (other == null) return -1;
...

}
}

Key Words and Stereotypes

Convey extra information about a class, an attribute, or a
relationship.

Stereotypes

<<abstract>>

<<interface>> or <<I>>

<<enum>>

for relationships:

<<use>> this is useless
<<create>>

Key Words

{abstract}

{readonly}

{ordered}

{unique}

Stereotypes and Qualifiers

Actor is an abstract class
 name in Bold-Italic

 act() is abstract method
 name in italic font

 EAST and WEST are class
constants

<<abstract>>

Actor
Actor

{abstract}

Two ways to show abstract class:

Dependency

 Association implies an attribute of an object

 Dependency just means one class somehow requires
another class:

 type of parameter to a method

 creates a local object of the other class

 calls a method of another class

Uses

public class Person {
findAddress(AddressBook book, String what){

Address address = book.find(what);
 ...

 }
}

Uses

public class Person {
findAddress(AddressBook book, String what){

Address address = book.find(what);
 ...

 }
}

Inheritance

In Greenfoot...

 Animal is a kind of Actor

 Crab is a kind of Animal

public abstract class Actor {
public abstract void act();

}
public class Animal extends Actor {

public void act() { /* do nothing */ }
}
public class Crab extends Animal {

public void act() { /* move and eat worms */
if (canSee(Worm.class))

eat(Worm.class);
...

Inheritance or Generalization

 Crab is a kind of Animal

 Animal is a kind of Actor

 in Java and C#, a class can
only extend one other class

No multiplicity on inheritance/depends

multiplicity is used only on
associations, not

 inheritance

 dependency

 implements
nonsense

Implementing an Interface

 An interface specifies a type
of behavior, but no
implementation

 Methods in an interface are
automatically public and
abstract

 in Java, a class can
implement any number of
interfaces

<<interface>>

Comparable

compareTo(other: Object): int

Person

-firstName: String

-lastName: String

+equals(other: Person): bool

+toString() : String

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

