
Hypertext Transport Protocol

James Brucker

Hypertext Transport Protocol (HTTP)

 Protocol used by the World Wide Web

 Mostly widely used protocol on the Internet

 Platform independent

 Human readable

HTTP uses TCP and IP
Internet protocols are divided into "layers" -- a packet
inside a packet.
Each "layer" providing a different kind of functionality.

HTTP

Internet Protocol (IP)

Internet Protocol (IP) transports packets over Internet.

Every device on the Internet uses the IP protocol.

IP provides:

 addressing - each site has an IP address

 routing - how to "route" a packet from source to dest.

IP does not:

 guarantee delivery of packets

 deliver packets in the order sent

 maintain a "connection" between source and dest.

IP Addresses

Every device on the Internet has an IP address

IP version 4 - 4 byte addresses

158.108.216.5 - address of www.ku.ac.th

172.217.27.228 - www.google.com (many addresses)

127.0.0.1 - "localhost". Address of your own host.

0.0.0.0 - address pattern meaning "anything"

IP version 6 - 16 byte addresses. Newer version of IP.

2406:3100:1010:100:0:0:0:5 - www.ku.ac.th

2406:3100:1010:100::5 - same thing, 0-bytes omitted

2404:6800:4001:80e::2004 - www.google.com (many)

What's My IP Address?

To see your local IP addresses:

linux> ifconfig [interface_name]

windows> ipconfig [interface_name]

You can also find this in your network settings.

Your local IP address may be different from your public IP
address; due to Network Address Translation (NAT) performed
by the router/gateway.

This is usually the case if you connect to internet using...

- home broadband

- mobile tethering (or browser on mobile phone)

- KUWin

What's My Public IP Address?

Your public IP address is what is visible on the Internet.

Many ways to view it. In browser search bar type:

Chrome: my ip address (space required)

Any Browser: ipinfo.io (Cloudflare, lots of info!)

Other Service: myip.com

 whatismyipaddress.com

Your router or ISP translates your local address to a
public address, which may be shared with other
devices using "port mapping".

IP Transports a "Payload"

IP transports data between hosts.

The payload (data) uses some other protocol.

Usually: TCP,

 UDP,

 or ICMP

IP

HTTP

TCP

TCP for "Reliable" Communication

Transmission Control Protocol (TCP) maintains a
virtual connection between hosts.

What TCP provides:

 maintain a "virtual connection" between hosts

 ensures packets are delivered in the order sent

 request resend of any missing data

 identifies a "port" (number) to deliver payload to

What's a Port? Why do we need ports?

server
I want a web page (http) !!

I want my mail !!

A host may have many, many of internet connections at
the same time!

A server may offer many services: HTTP, mail, ssh, ...

How does a host know which packets should go to which
application???

I want to use ssh !!

Port is a number to identify connection

server
158.108.12.99:1444 - 172.217.31.36:443

158.108.12.99:7501 - 172.217.31.36:143

A connection has a port number 1 - 65,535 for each end
point.

Servers listen for connections on well-known port nums.

Each ip_address:port pair identifies an endpoint.

(https)

158.108.12.99:7511 - 172.217.31.36:22

(imap)

(ssh)

Port Numbers Identify Services

Standard services have a unique port number

Service TCP Port

HTTP 80

HTTPS 443

Mail Transport (SMTP) 25, 465 (secure)

IMAP (client mail delivery) 143, 993 (secure)

SSH 22

MySQL server* 3306

See /etc/services or Wikipedia for more services.
* For security, you should not expose a database
service to the Internet.

A Service Can Use Any Port

Web servers usually use port 80 (http) and 443 (https).

But you can use any port for your web server.

Django development server listens on port 8000 by default...

but you can tell it to use any port.

Ports 1-1023 are privileged ports.

Only "root" or admin can start a process on these ports.

Exercise 1: View your connections

1. In a terminal window type:

 Linux/MacOS> netstat -n --tcp

 Windows> netstat -n -p tcp

2. Open a web browser & visit a new web site.

3. Type "netstat" again ... are there new connections?

"-n" means show IP address instead of host name.

Omit -n to show host names, but it is much slower.

Exercise 2: Create Your Own Server

Use netcat (nc) or ncat for this:

1. Open a terminal window and start a server. -l means
"listen", 4444 is port number. Any port > 1024 is ok.

2. Open another terminal window and connect to
"localhost" on port 4444. Type something...

cmd> ncat -v -l -p 4444

cmd> ncat localhost 4444
Hello? Is anyone there?

Establishing a TCP Connection

listen *:80/TCP

TCP connect (SYN)

 Accepted (SYN/ACK)

GET /index.html

HTTP/1.1 200 OK
[index.html attached]

TCP needs 3 packets just to
establish a connection

This adds delay and overhead

When delay or overhead are
important, use a different
protocol, e.g. UDP

ACK server's SYN

Test Your Understanding

You can have many connections to the same service!

1. Open Chrome and connect to gmail.com

2. Open Firefox or Safari and also connect to gmail.com

What the server sees:

gmail.com

From: 182.232.11.22 To: 172.217.31.27:443

From: 182.232.11.22 To: 172.217.31.27:443

Packets are coming from same IP address
and going to same IP address and port!

Where to Send a Reply?

How does a server distinguish the two connections?

Could Gmail get "confused" and send a
reply to the wrong browser?

Explain.

gmail.com

From: 182.232.11.22 To: 172.217.31.27:443

From: 182.232.11.22 To: 172.217.31.27:443

Packets are coming from same IP address
and going to same IP address and port

Where to Send a Reply?

Answer: Each connection from your computer (to
anywhere) will have a unique port number.

Gmail will use your port number as the TCP
destination port when it sends a reply.

gmail.com

From: 182.232.11.22:1234 To: 172.217.31.27:443

From: 182.232.11.22:5555 To: 172.217.31.27:443

Each connection has a unique sender port
number.

HTTP uses TCP
 HTTP uses TCP for connection and IP for transport

 TCP/IP connections are managed by the OS.

 Web Server handles only the HTTP message

IP Layer

TCP Layer

HTTP Layer
(Application)

TCP LayerTCP LayerOperating
System
handles
this

Web Server Handles This

HTTP is Request / Response Protocol

listen *:80/TCP

GET http://somehost.com/path/index.html

HTTP response

Client sends an HTTP request, server sends a response

Server listens (waits) for incoming requests.

Server is stateless - not required to remember any
previous requests or connections (but web apps may).

HTTP Request - Response

listen *:80/TCP

TCP connect (SYN)

 Accepted (SYN/ACK)

GET /index.html

HTTP/1.1 200 OK
[index.html attached]

HTTP 1.0: one request/reply.
Connection closed
immediately.

HTTP 1.1 allows persistent
connections (many requests)
and data compression for
performance

HTTP/2.0 is much faster:
header caching, overlapping
requests, better compression

ACK server's SYN

HTTP Versions
HTTP 1.1
1999

HTTP/2
2015

HTTP/3
2022

% of web traffic 9% 64% 28%

Transport TCP TCP UDP + QUIC

Body format Text Text or binary Binary

Persistent
Connections

Yes Yes Yes

Pipeline
Requests

Yes Yes Yes

Multiplex request
& resp.

No Yes, with
prioritization

Yes, improved
over HTTP/2

Server Push No Yes Yes

Security HTTPS Optional TLS Required Built-in to QUIC

HTTP Protocol Basics

1. HTTP Request format

2. HTTP Request methods

3. HTTP Response format

4. Header fields

5. Response codes (status codes)

6. URLs

HTTP Request Format

METHOD /relative-url HTTP/1.1
Host: server.host.name
Header1: xxxx
Header2: yyyy

Blank Line (two CR/LF)
indicates end of headers

Only POST and PUT requests have a REQUEST
BODY

REQUEST BODY (POST and PUT only)

Headers

HTTP Request Example

GET /index.html HTTP/1.1

Host: www.cpe.ku.ac.th

User-Agent: Mozilla/5.0

Accept: text/html, text/plain, image/gif,
image/jpeg

Accept-Language: en, th;q=0.5

Accept-Charset: ascii, ISO8859-1, ISO8859-13

Accept-Encoding: gzip,deflate

Blank line (two CR/LF)
indicates end of headers

Accept: includes "text/plain" or "*/*" as a last resort.

In browser enter: http://www.cpe.ku.ac.th/index.html

HTTP Request Methods

GET get the resource specified by URL

POST send information to server using body

 may have side effects; not repeatable

PUTsave or update a resource at the URL

 used to create or update resource at URL

DELETE delete resource at the given URL

OPTIONS request info about available options

HEAD retrieve meta-information about URL
 (used by search engines & web crawlers)

TRACE trace request through the network

CONNECT connect to another server; used by proxies

Common Request Headers

w3schools.net and httpwatch.com have a longer list.

RFC2616: http://www.w3.org/Protocols/rfc2616/rfc2616.html

Accept: text/html,application/xhtml+xml,text/plain

Accept-Language: en-US,en-GB;q=0.5

Accept-Encoding: gzip, deflate

Host: www.google.com

User-Agent: Mozilla/5.0

Content-Type: multipart/form-data (for POST)

Content-Length: 2048 (for POST and PUT)

X-Powered-By: Godzilla (X- = custom headers)

HTTP Response Example

HTTP/1.1 200 OK
Date: Mon, 28 Jul 2019
Server: Apache/2.2.24
Keep-Alive: timeout=5,max=100
Content-Type: text/html
Content-Length: 240

<html>
<head>header fields</head>
<body>content of the page</body>
</html>

Blank Line (CR) indicates
end of headers

DATA

HTTP Response Format

HTTP/1.1 200 OK
Date: Tue 31 Aug 09:23:01 ICT 2019
Server: Apache/2.2.24 (Linux)
Last-Modified: 28 Aug 08:00:00 ICT 2019
Content-Length: 2408
Content-type: text/html

First Line: Protocol StatusCode Status-Msg

 HTTP/1.1 200 OK

DATA (16400 Bytes)

Response Content-Length

HTTP/1.1 200 OK
Date: Tue 31 Aug 09:23:01 ICT 2019
Server: Apache/2.2.24 (Linux)
Last-Modified: 28 Aug 08:00:00 ICT 2019
Content-Length: 16400
Content-type: image/jpeg

For persistent connections, client needs to know how much
data is in the response.
Example: server sends a JPEG file How many bytes is it?

Client uses the Content-Length header.

DATA

Unknown Content Length

HTTP/1.1 200 OK
Date: Tue 31 Aug 09:23:01 ICT 2019
Server: Apache/2.2.24 (Linux)
Last-Modified: 28 Aug 08:00:00 ICT 2019
Connection: close
Content-type: image/jpeg

If content length is not known by server, the server uses
header "Connection: close".

After the response is sent, server closes the connection.

The client reads data until end-of-input (EOF).

Response Codes
HTTP/1.1 200 OK

Response Codes:

1xx Information

100 Continue

2xx Success

200 OK

201 Created (a new resource was successfully created)

202 Accepted (I'll process your request later)

3xx Redirection

301 Moved Permanently. New URL in Location header.

302 Moved Temporarily. New URL in Location header.

303 Redirect and change POST to GET method

304 Not Modified ("Look in your cache, stupid")

Error Response Codes
4xx Client Error

400 Bad Request

401 Not Authorized (client not authorized to do this)

404 Not Found

5xx Server Error

500 Internal Server Error (application error, config prob.)

503 Service Unavailable

List of all HTTP status codes:

http://stat.us

http://en.wikipedia.org/wiki/List_of_HTTP_status_codes

Why is "Host" header required?

GET /index.html HTTP/1.1
Host: www.ku.ac.th

WHY?

Surely, the server must know its own host name!

… or does it?

HTTP Requests always include a "Host" header.

It is the name of the destination host.

Uniform Resource Locators (URL)

A Uniform Resource Locators (URL) locate resources on
the Internet (not just the web).

Structure of a URL:

Protocol:
http
ftp
jdbc
file
mysql

Hostname and port

or IP address

Port is optional

Path and resource name,
the path is optional

http://www.cpe.ku.ac.th:8080/~jim/dictionary.txt

Uniform Resource Locator (URL)

http://www.cpe.ku.ac.th/forms/junk.html?
name=jim%40.cpe.ku.ac.th&msgid=0x4412858798

General Form of a Uniform Resource Location (URL)

http://www.cpe.ku.ac.th:80/~jim/images/cat.jpg

Protocol:
http
ftp,...

Authority
hostname or
IP address

Path and resource
name,
the path is optional

Port

URL Details

Path Parameters - extra info in path segment

http://finger.com/person;name=joe/telephone;co=th

Query Parameters - used for GET

http://host.com/adduser.cgi?name=joe&age=23

Encode special characters using %

"http://host.com/web svc" becomes:

http://host.com/web%20svc

URL for File, URL with user info

file:///home/me/workspace/unittesting/fraction.py

You can omit "//" since there is no host:

file:/home/me/workspace/unittesting/fraction.py

Use a web browser to open a FILE on your computer:

protocol://username:password@hostname/...

http://jim@cpe.ku.ac.th/something

May include user info in a URL:

mysql://myuser:mypassword@hostname/mydatabase

URL for database (Django dj-database-url uses this):

Command Line HTTP Tools

Sometimes you want to use HTTP from command line

 curl - command line HTTP client (from Unix)

 netcat (nc) - send TCP or UDP, listen for TCP or UDP

 telnet - primitive way to access any TCP port

 wget - Download a web page, resource, or entire tree.
(Used by Zuckerberg in The Social Network movie.)

Exercises

End of the HTTP basic slides.

Do the exercises described in class,
or see the "HTTP-in-Action" slides.

Questions

Host name --> IP Address?

The Internet uses IP addresses to send packets.

But we enter names like "mail.google.com".

How does the computer know what address to
use for "mail.google.com"?

IP Address --> Hostname?

In your web application log file, you see many
attempted logins from 93.174.93.33.

How can you determine who owns this address,
and where it is?

How do they know this?

When I visit https://ipinfo.io

it replies...

How do they know
this stuff?

Optional Material

Stuff you aren't required to know.

Do the "HTTP in Action" exercises first.

"GET" in HTML Forms

Two methods of sending data from HTML forms to Web
server: GET and POST.

GET puts all form data in the URL.

<HTML>
Here is my form:
<FORM ACTION=”/cgi-bin/parse.cgi” METHOD=”GET”>
Your name:<INPUT TYPE=text NAME="Name">

<INPUT TYPE=checkbox NAME="SpamMe"> Want spam?
</FORM>

GET /cgi-bin/parse.cgi?Name=Jim+Brucker&SpamMe=yes
HTTP/1.1
Host: register.seo.com
Accept: text/html, text/plain, ...

"POST" in HTML Forms

POST puts the form data in the body of the HTTP
request. POST can transfer more data than GET.

<HTML>
Here is my form:
<FORM ACTION=”/cgi-bin/parse.cgi” METHOD=”POST”>
Your name:<INPUT TYPE=text NAME="Name">

<INPUT TYPE=checkbox NAME="SpamMe"> Want spam?
</FORM>

POST /cgi-bin/parse.cgi HTTP/1.1
Host: register.seo.com

Name=Jim+Brucker
SpamMe=yes

Implementing State

 HTTP is stateless

 So, how can web server remember (identify) a client?

 How can server remember what page you are on?

How to Implement State

3 common ways:

1. Hidden fields

 <form method=”GET”>
<input type=”hidden” name=”id” value=”123456789”>

2. Path parameters or custom URL

3. Cookies. In HTTP response, server adds header:

Set-cookie: asderwq3498sdfkwrdfiuq235947dasd

Exercise: View your Cookies

 Look at some cookies in your browser cache.
 What information is included in a cookie?

Firefox: Preferences → Privacy → Remove Individual
Cookies

Chrome: Settings → Show Advanced → [Content
Settings] button → [All Cookies and Site Data]

Why does Chrome make cookies so hard to find?

Exercise: How many requests per page?

1. Open Chrome More Tools -> Developer Tools
(also works in Brave, maybe in Edge)

2. Select the Network tab.

3. In a normal Chrome browser window, visit any site.
 Try: cnn.com www.cpe.ku.ac.th

 How many requests did the browser send?

 Why so many?

Note: Look at the timeline of requests. Does the browser
wait for a reply before sending next request?

Traffic to load page "cnn.com"
178+ requests to get a single page.

Tools for a Single Request

Sometimes we want to...

 manually create & send an HTTP request (for testing)

 control what headers are sent

 inspect details of the request and response

Tools for Viewing Http Traffic

HttpFox or HttpRequester (free) – monitor/inspect http
requests (Firefox). Great for seeing what is happening.

Chrome "Developer Tools" – use Network tab to watch
network traffic.

Dev HTTP Client aka "Rest HTTP API Client" (Chrome)

httpwatch – Watches all traffic. Can perform security
checks. Chrome & Firefox plugin (free and paid
versions) www.httpwatch.com

These tools are great for testing web services.

Get KU's Home Page

Try curl --verbose or Chrome DHC extension.

1) send a GET request to: https: //www.ku.ac.th

What is the response?

2) send a GET request to the refresh url in the response.

What is the new response?

Where does it tell you to go? What is different?

3) send a GET to the new location.

Keep going...

How would you make KU's web site more efficient?

Get KU's Home Page in English

After you successfully get KU's home page,

try adding some request headers (one at a time):

Accept-Language: en

Accept: text/plain

Accept: image/*

Do they work?

What methods does this URL allow? Do they work?

Example Web Services

Explore California

http://services.explorecalifornia.org/pox/tours.php

(pox = Plain Old XML, or "rss" or "json")

Google Maps API

http://maps.googleapis.com/maps/api/geocode/xml?

address=Kasetsart%20University&sensor=false

curl Examples

 Get a resource (web page, image, anything):
curl -v http://somehost.com/favicon.jpg

 Send a POST request with username=hacker
curl http://somehost.com/login.jpg

 --data username=hacker
 Specify a header option in request
curl -H “Accept: text/plain” http://somehost.com/path

 Get help

curl --help

 Many options have 2 forms: -d or --data

curl Exercise

Get KU's home page in English.

cmd> curl -H "Accept-language: en"
http://www.ku.ac.th/web2012/index.php

Experiment with methods & headers

 Use netcat to get a web page from iup.eng.ku.ac.th
 Find the actual location of their default home page
 What METHODS does it accept?

– GET POST PUT HEAD OPTIONS DELETE ?
 Send some invalid requests and note the responses

• send to invalid URL
• send unsupported method: DELETE, PUT,

POST
• try to DELETE something!

• send header that server can't handle, e.g:
Accept: text/plain or application/xml
Accept-language: jp

Insecurity

There seems to be a bug in regis.ku.ac.th that allows
unauthenticated download of pages, if you know the URL.

The 01219245 (450) class student list is here:
https://regis.ku.ac.th/grade/download_file/class_01219245_611.txt

(You can download it w/o logging in.)

a) download it. (use wget)

b) can you download other course lists?

 You have to guess the last 3 digits, but so what?

 Computers are good at repetitive tasks.

c) can you upload a new class list (use PUT or POST)?

Exercise

 Find a web page containing a FORM using POST

 <form method=”POST” action=”some_url”>

 <input type=”text” name=”username” .../>

1.examine the page source

2.note the FORM URL and what fields it sends

3.send the form (with data) using Curl or Dev HTTP

POST /some/url HTTP/1.1
Host: www.example.com
Content-length: 26

name=jim&birthday=1/1/1900

http://www.example.com/

Compression

Accept-Encoding: gzip, deflate

Allow server to compress response body.

Q? Can HTTP transmit data in binary form?

Surreptitious User Tracking

<HTML>
<BODY>
Hello, victim. So you think just opening e-mail is safe?
Well, think again. You'll be getting more SPAM from us soon!
<img src=http://www.spammer.com/images/barf.gif?
id=428683927566 />
<!-- this is better, no query params -->

If you open an E-mail message, does the sender know
you looked at it?

Conditional GET

 A Client can request a resource only if it has been
modified since a given date.

 Used for efficiency & caching.
 Use "If-modified-since: " or "Etag:" headers.

GET /path/index.html HTTP/1.1
If-modified-since: 1 Aug 18:32:00 ICT 2014
...etc...

If page has not been modified, the server responds:

 HTTP/1.1 304 Not Modified

Conditional GET: server response

 If page has been modified, server responds:

HTTP/1.1 200 OK
Content-type: blah

DATA

 If page has not been modified, server responds:

HTTP/1.1 304 Not Modified

Conditional GET using Etag

 A server can include an "Etag" as page identifier. It is
usually an MD5 hash but can be anything:

HTTP/1.1 200 OK
Content-Type: image/jpeg
Etag: "33101963682008"

 Next time the client needs the image (but its still in his
cache) he sends:

 GET /path/image.jpeg HTTP/1.1

 If-None-Match: "33101963682008"

Image data

Non-persistent Connection

listen *:80/TCP

SYN

SYN/ACK-SYN

GET webpage /ACK-SYN

send page

CLOSE WAIT

ACK

FIN/ACK-FIN

FIN

Sequence repeated for
every web request!

 In HTTP 1.0, client must
open a new connection for
each request

Lots of delay
Lots of traffic and server

overhead

Exercise: How many requests?
To download and display this web page, how many

requests does client have to send to server?
For HTTP/1.0 how many connections to server are

needed?

<HTML>
<link rel="stylesheet" href="stylesheet.css">
<BODY>
<h1>My vacation</h1>
<p>
For vacation we went to Bangkok.
Here's a photo of Wat Phra Kaeo

Persistent Connection

listen *:80/TCP

Connect

SYN/ACK-SYN

GET webpage

send webpageMultiple request/reply in
one connection

 HTTP 1.1 uses persistent connection
 Client can request using keep-alive
 server keeps connection open briefly
 client can pipeline requests
 client needs to know length of data

GET stylesheet.css / ACK

GET images/image1.jpeg

GET images/image2.jpeg

send stylesheet.css

Web Caching

 Caching is critical to performance of the web
 Multiple levels of caching:

– client (web browser cache)
– server (manually configured cache)
– gateway (transparent cache engine)
– network (CDN, cooperating caches)

Cache Engines
 Harvest (free)
 Squid (free)
 Cisco Cache Engine (based on Linux and Harvest)

Why Web Caching?

 Decrease use of network bandwidth

 Faster response time

 Decrease server load

 Security and web access controls (auth, blocking)

Content Delivery Networks

 Akamai, DigitalIsland, etc.

 Has its own network of servers that replicates content of the
content provider (e.g. cnn.com), e.g. all images

 in the index.html file all references of:

www.cnn.com/images/sports.gif

 is re-mapped to
www.akamai.com/www.cnn.com/images/sports.gif

 Akamai servers cache images and index files for cnn.com

 Server domain name: www.akamai.com

 Index file changed to: www.akamai.com/.../images/sports.gif

Content Delivery Networks (2)

 When client downloads http://www.cnn.com/index.html he gets a
cached (modified) file from cache server, containing

 Next, client tries to resolve "www.akamai.com"

 DNS server of Akamai will...

 identify client's location based on client's IP address
(database)

 chooses one of Akamai's cache servers which is "closest" to
the client's location

 returns IP address for "www.akamai.com" closest to client.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75

