
The Web as a Client-Server
System; TCP/IP intro!

Engineering Software as a Service  
§2.1–2.2"

Armando Fox!

1!
© 2013 Armando Fox & David Patterson, all rights reserved

2!

Web at 100,000 feet!
•  The web is a client/server architecture!
•  It is fundamentally request/reply oriented!

Web browser	

 Web site	

Internet	

GET /bears/

Nuts and bolts: 
TCP/IP protocols!

•  IP (Internet Protocol) address identifies a physical network
interface with four octets, e.g. 128.32.244.172
–  Special address 127.0.0.1 is “this computer”, named

localhost, even if not connected to the Internet!!
•  TCP/IP (Transmission Control Protocol/Internet Protocol) !

–  IP: no-guarantee, best-effort service that delivers packets from one IP
address to another!

–  TCP: make IP reliable by detecting “dropped” packets, data arriving out of
order, transmission errors, slow networks, etc., and respond appropriately!

–  TCP ports allow multiple TCP apps on same computer!
•  Vint Cerf & Bob Kahn: 2004 Turing Award for  

Internet architecture & protocols, incl. TCP/IP!
GET /bears/

HTTP/0.9 200 OK HTTP/0.9 200 OK

Web at 100,000 feet!
•  The web is a client/server architecture!
•  It is fundamentally request/reply oriented!
•  Domain Name System (DNS) is another kind of

server that maps names to IP addresses!

Web browser	

 Web site	

DNS server	

Now that we’re talking, what do we say?  
Hypertext Transfer Protocol!

•  an ASCII-based request/reply protocol for
transferring information on the Web!

•  HTTP request includes:!
–  request method (GET, POST, etc.)!
– Uniform Resource Identifier (URI)!
– HTTP protocol version understood by the client!
– headers—extra info regarding transfer request!

•  HTTP response from server!
–  Protocol version & Status code =>!
–  Response headers!
–  Response body!

HTTP status codes:	

2xx — all is well	

3xx — resource moved	

4xx — access problem	

5xx — server error	

Cookies!

•  Observation: HTTP is stateless"
•  Early Web 1.0 problem: how to guide a user
“through” a flow of pages?!
– use IP address to identify returning user?  
✖ public computers, users sharing single IP!

– embed per-user junk into URI query string?  
✖ breaks caching!

•  Quickly superseded by cookies"
– Watch: screencast.saasbook.info!

•  Rails manages tamper-evident cookies for you!

SaaS app; browser

HTTP request; browser	

SaaS app; HTTP response	

Browser; SaaS app ☐

☐

☐

☐

8!

A ____ can create and modify cookies;
the ____ is responsible for including the
correct cookie with each request

HTML+CSS 

Engineering Software as a Service §2.3  
Armando Fox!

9!
© 2013 Armando Fox & David Patterson, all rights reserved

10!

Introduction
This article is a review of the book
Dietary Preferences of Penguins,
by Alice Jones and Bill Smith. Jones
and Smith's controversial work makes
three hard-to-swallow claims about
penguins:
First, that penguins actually prefer
tropical foods such as bananas and
pineapple to their traditional diet
of fish
Second, that tropical foods give
penguins an odor that makes them
unattractive to their traditional
predators

CS 142 Lecture Notes:
HTML!

Slide 12!

<h1>Introduction</h1>
<p>
 This article is a review of the book
 <i>Dietary Preferences of Penguins</i>,
 by Alice Jones and Bill Smith. Jones and Smith's
 controversial work makes three hard-to-swallow claims
 about penguins:
</p>

 First, that penguins actually prefer tropical foods
 such as bananas and pineapple to their traditional diet
 of fish

 Second, that tropical foods give penguins an odor that
 makes them unattractive to their traditional predators

...

<h1>Introduction</h1>
<p>
This article is a review of the book
<i>Dietary Preferences of Penguins</i>,
by Alice Jones and Bill Smith. Jones
and Smith's controversial work makes
three hard-to-swallow claims about
penguins:

First, ...

Introduction
This article is a review of the book Dietary Preferences of
Penguins, by Alice Jones and Bill Smith. Jones and Smith's
controversial work makes two hard-to-swallow claims about
penguins:

●  First, that penguins actually prefer tropical foods such
as bananas and pineapple to their traditional diet of fish

●  Second, that tropical foods give penguins an odor that
makes them unattractive to their traditional predators

...

Hypertext Markup Language!
•  Document = Hierarchy of elements !

– inline (headings, tables, lists, paragraphs)!
– embedded (images, JavaScript)!
– forms—allow user to submit simple input

(text, radio/check buttons, dropdown
menus...)!

•  Elements delimited by <tag>....</tag>
– Some have content: <p>Hello world</p>
– Some have attributes:
–  id and class attributes useful for styling!

Cascading Style Sheets (CSS)
separate content from presentation!

•  <link rel="stylesheet" href="http://..."/>
(inside <head> element): what stylesheet(s)
go with this HTML page!

•  HTML id & class attributes important in CSS!
–  id must be unique within this page!
– same class can be attached to many elements!
 <div id="right" class="content">
 <p>
 I'm Armando. I teach CS169 and do
 research in the AMP Lab and Par Lab.
 </p>
 </div>

CSS Selectors identify specific
elements for styling"

 <div class="pageFrame" id="pageHead">
 <h1>
 Welcome,
 Armando
 </h1>

</div>

•  tag name: h1
•  class name: .pageFrame
•  element ID: #pageHead
•  tag name & class: div.pageFrame
•  tag name & id: img#welcome (usually redundant)!
•  descendant relationship: div .custName
•  Attributes inherit browser defaults unless overridden!

Goal: HTML markup contains no visual styling information"

both of these match the outer
div above. Don’t do this!!

p .myClass

.myClass span

All of these	

span.myClass ☐

☐

☐

☐

17!

Which CSS selector will select only the
word “bar” for styling:!
<p class="myClass">foo,
 bar</p>

3-tier shared-nothing
architecture & scaling!

Engineering Software as a Service §2.4!
Armando Fox!

18!
© 2013 Armando Fox & David Patterson, all rights reserved

19!

Dynamic content generation!

•  In the Elder Days, most web pages were
(collections of) plain old files!

•  But most interesting Web 1.0/e-commerce
sites run a program to generate each “page”"

•  Originally: templates with embedded code
“snippets”!

•  Eventually, code became “tail that wagged
the dog” and moved out of the Web server!

Sites that are really programs
(SaaS)!

•  How do you:!
–  “map” URI to correct program

& function?!
–  pass arguments?!
–  invoke program on server?!
–  handle persistent storage?!
–  handle cookies?!
–  handle errors?!
–  package output back to user?!

•  Frameworks support these
common tasks"

presentation (Web
server)	

your app	

Common Gateway
Interface (CGI)	

Filesystem	

or database	

 persistence	

logic (app)	

client (browser)	

Developer environment vs.
medium-scale deployment!

Webrick!

rack!

SQLite
adapter!

Rails
library!

file.sqlite3!

Developer

MySQL!

thin!
rack!

MySQL
adapter!

Rails
library!

thin!
rack!

MySQL
adapter!

Rails
library!

thin!
rack!

MySQL
adapter!

Rails
library!

Apache w/mod_rails
+ caching mode!

Page
cache!

Medium-scale deployment

HTTP servers &
static asset caches!

PostgreSQL! Database!
cache!

“Dynos”
running
apps

Large-scale curated
deployment, e.g. Heroku

Sharding vs. Replication!
•  Partition data across

independent “shards”?!
+ Scales great!
–  Bad when operations touch >1

table!
–  Example use: user profile!

•  Replicate all data everywhere?!
+ Multi-table queries fast!
–  Hard to scale: writes must

propagate to all copies =>
temporary inconsistency in data
values!

–  Example: Facebook wall
posts/“likes” !

23

users A-J!

users K-R!

users S-Z!

App
server!

App
server!

App
server!

All users!

All users!

All users!

App
server!

App
server!

App
server!

Summary: Web 1.0 SaaS!
•  Browser requests web resource (URI) using HTTP!

–  HTTP is a simple request-reply protocol that relies on TCP/IP!
–  In SaaS, most URI’s cause a program to be run, rather than a

static file to be fetched!
•  HTML is used to encode content, CSS to style it visually!
•  Cookies allow server to track client!

–  Browser automatically passes cookie to server on each request!
–  Server may change cookie on each response!
–  Typical usage: cookie includes a handle to server-side information !
–  That’s why some sites don’t work if cookies are completely

disabled!
•  Frameworks make all these abstractions convenient for

programmers to use, without sweating the details!
•  ...and help map SaaS to 3-tier, shared-nothing architecture!

(a) Firefox (b) Apache web server
(c) PostgreSQL 	

(a) Microsoft Internet Information Server
(b) Rack+Rails (c) Apache web server	

(a) Firefox (b) Microsoft Internet
Information Server (c) MySQL	

(a) Apache web server (b) Rack+Rails
(c) Relational database	

☐

☐

☐

☐

25!

Match the terms:
(a) presentation tier, (b) logic tier,
(c) persistence tier

