
Java Coding Standard

This coding standard is based on Sun's Java Coding Standard and the experience of many
programmers. It is designed to help make code easy to read & share.

You must use this standard for all assignments in the OOP course. Points are deducted for
not adhering to it.

Source File Structure Explanation

/*

 * This source code is Copyright 2012 by Jim Brucker.

 */

package coinpurse;

import java.util.List;

import java.util.Scanner;

/**

 * A Coin Purse with a fixed capacity, it

 * manages insert and withdraw of coins.

 * @author Your Name

 * @version 2012.07.15

 */

Optional comment (not Javadoc) at start of file. This comment
is for copyright or notes to other developers.

The package for this class. Package name must be
lowercase. package name must be same as folder name.

Import classes from other packages. Must come after
"package" statement. import is like C# "using".

Javadoc comment for the first class, begins with /** .

First sentence should describe what the class does and end
with a period. Don't write "This class..." (useless waste of
words). Include these tags:

@author and your name. Don't use parenthesis!

@author another author -- use one tag for each author.

@version is a version number or date modified.

Version must increase, so use year.mon.day eg 2012.01.15

public class Purse implements Comparable Class names should begin with capital letter and use mixed
case, as shown. All uppercase name is allowed only if name
is an acronym, such as URL or ISBN.

/** convert nanoseconds to seconds */

static final double NANOSECOND = 1.0E-9;

static final long MAX_SIZE = 1000;

Declare constants first.

Constant names should be UPPERCASE with words
separated by _ (underscore).

Public constants should have a Javadoc comment.

// birthday is final because it

// should not change.

private final Date birthday;

public Person(String name, Date bday) {

this.birthday = bday;

If final is used simply to prevent reassignment of a reference,
rather than a constant value that has special meaning, then
use camel-case, just like ordinary variable name.

"final" is often used for attributes and local variables we don't
want to change after the first assignment. For example, a
Person's birthday should not change.

/** Scanner for input from console */

private static Scanner console
 = new Scanner(...);

private static int nextID = 1;

Declare static variables second (after constants).

This Scanner doesn't really belong in Purse class, it is just an
example.

/** Number of items purse can hold. */

private int capacity;

/** List of items in the purse. */

private List<Coin> coins;

Declare attributes next. You must declare the access level
(public, private, or protected); usually it is private.

Attribute names should be camelCase, beginning with a
lowercase letter.

Write a Javadoc comment if the meaning of attribute is not
obvious. Javadoc comment should come before the attribute
declaration.

Java Coding Standard for OOP - 1 -

private String productCode;

private Money total;

/* Bad names */

private String prodCode;

private Money t; private int n;

private double Total;

Good names: descriptive, camel case (first letter is
lowercase, each other words start with uppercase)

Bad names:

bad: don't use abbreviations

bad: names like "t" and "n" are not descriptive

wrong: variable names should begin with lowercase

/** Initialize a new purse.

 * @param size is the capacity of purse

 */

public Purse(int size) { ...

Constructors should have Javadoc comment. @param tag
describes each parameter.

A Constructor does not have a return value -- not even void.

No space between class name and "(".

/**

 * Compare coins by value.

 * @param coin is a Coin to compare to this.

 * @return -1 if this coin has lower value, ...

 * @throws NullPointerException if coin is null

 * @see java.lang.Comparable#compareTo(Object)

 */

public int compareTo(Coin coin) {

body of method

}

Methods: Write a Javadoc comment before every method,
except for trivial get/set methods.

1. First sentence should describe what the method does.
Write a sentence, ending with period.

2. Don't write: "This method does..." (waste of words).

3. Include javadoc tags for:

@param parameter descriptions

@return describe the return value, if any

@throws list any exceptions thrown

@see (optional) other methods containing
related documentation

public int compareTo(Coin coin)
{

body of method
}

Method "{" and "}" block: Two ways to format.

You can put left brace "{" on same line as method name (as
in previous example) or on a separate line (this example).
Be consistent.

/** Get capacity of the purse.

 * @return number of coins it can hold

 */

public int getCapacity() {

return capacity;

}

Indent blocks using 1 tab. Set tab size = 4 spaces.

Use TAB not spaces to indent.
In Netbeans, use Options > Editor > Formatting and
UNSELECT "Expand tabs to spaces".

In Eclipse TABs are the default.

BlueJ automatically converts TAB to spaces.

A simple accessor (getter) method.
while (count < MAX_COUNT) {

if (count%10 == 0) {
doReport();
print(count);

}
else {

doSomethingElse();
}
count++;

}

Indent blocks consistently!

Code inside block should be at same indent.

Closing "}" must match previous indent level.

Use TAB for indent, not spaces.

if (amount <= 0) {
System.out.println("Invalid amt");
return;

}
else deposit(amount);

"if" blocks:

When "then" or "else" clause contains more than one
statement, indent as in previous example.

When "then" or "else" clause contains just one statement,
you can omit the { } as in this example.

if (size < 0) size = 1;

while (count­­ > 0) readLine();

// no space before "(" in these cases:

double diag = Math.hypot(2, 3);

Date now = new Date();

Use space before "(" and after ")" in "if" and "while".

Exceptions: no space between method name and "(" for
parameters. No space after class name and "(" in new.

Java Coding Standard for OOP - 2 -

int total = quantity * unitPrice;

double descriminant = b*b ­ 4*a*c;

Use space around =, >, <, and arithmetic operators. For
long operations you can omit space around * and /.

public Class Purse {

public int getTotal() {

while(coins.hasNext()) {

Space before left brace "{" when on same line as class or
method name.

public void addToCount() {

count++;

NO Space between method name and "(".

NO Space between variable name and ++ or ­­.

long now = System.nanoTime();

double elapsedTime =

 (now ­ startTime)*1.0E+9; // what?

Don't use literal values for values that have special
meaning in your code.

It is hard to understand and modify.

In this example, what is meaning of 1.0E+9 ?

final double NANOSEC_PER_SECOND = 1.0E+9;

long now = System.nanoTime();

double elapsedTime =

 (now ­ startTime)*NANOSEC_PER_SECOND;

 // better

Use Named Constants for things that have special meaning
in your code.

UPPERCASE for names of constants (final values).

public static void main(String[] args) {

Game game = new Game();

ScoreBoard scoreboard =
new ScoreBoard(game);

game.play();

}

Use main to initialize the program, not for program logic!

The program's logic should be in methods, but not the main
method.

Usually main creates objects, connects objects together, and
then invokes some method to "run" the application.

Java Coding Standard for OOP - 3 -

