

Java's Input/Output

Java’s Hierarchy Input/Output Classes and
Their Purpose

Introduction

 These slides introduce several input and output
classes for special purposes, such as reading or
writing a file.

 Some of these slides use the concept of inheritance.

.

Types of Input/Output

Data is text
(characters and

String)

Data in binary format

Sequential Access
 write to terminal
 text, html files
 printf(), format()

 not human readable
 efficient for space
and computer read
 image, MP3, Word

Random Access

What's in a File?

A file stores information or data as bytes.

We can store anything:
 An editor stores text. characters are translated to

bytes.
 Can be 1 character = 1 byte or 1 char = 2 bytes ...
 Example: Eclipse stores Java src code as text

 Other applications store binary data.
 Example: MP3, JPEG, PNG

Basic Input Classes

InputStream read input as bytes

Reader read input as characters
InputStreamReader

BufferedReader read Strings, read entire lines

InputStream

buffer = new StringBuffer();

while (true) {

 int c = inputStream.read();

 if (c < 0) break; // end of input

 buffer.append((char)c);

}

Reads input as bytes -- one byte (or array) at a time.

Useful for reading data in binary format.

Do & test programming Idiom

buffer = new StringBuffer();

int c = 0;

while ((c=inputStream.read()) >=0) {

buffer.append((char)c);

}

This kind of code is common in C.

InputStream with array of byte

byte [] buff = new byte[80];

while (true) {

 int count = inputStream.read(buff);

 if (count <= 0) break; // end

 // process the bytes in buff

}

It is more efficient to read many bytes at one time.

FileInputStream
 An InputStream connected to a file.
 Has many constructors.
 Works just like InputStream!

FileInputStream inputStream =
 new FileInputStream("c:/test.dat");

while (true) {
 int c = inputStream.read();
 if (c < 0) break; // end of input
 buffer.append((char)c);
}
inputStream.close();

Input Classes Hierarchy

 Each layer "adapts" a lower layer to provide a different
interface. They are adaptors.

InputStream

read bytes

Reader

read chars

BufferedReader

read Strings

Scanner

read and
convert to
many types

InputStream

 InputStream reads bytes and returns them.
 No interpretation of character sets.
 OK for binary data.
 Not good for character data using character set.

Input
Data

Source

InputStream in = ...;

// read a byte

int b = in.read();

// read array of bytes

count = in.read(byte[] b);

InputStream
object

Reader

 Reader: reads bytes and converts to characters.
 Interpret bytes using a Character Set Encoding.
 Can handle any language... if you know the charset.

Input
Data

Source

InputStreamReader reader =
 new InputStreamReader(
 System.in, "MS874");
// get one character
int c = reader.read();
// get array of characters
int n = reader.read(char[]
c);

Reader
object

Character
Set

InputStreamReader class

InputStreamReader is a kind of Reader.

It reads the input and returns characters.

InputStream in = new FileInputStream("test");

InputStreamReader reader =

new InputStreamReader(in);

// read a character

char b = (char) reader.read();

// read several characters

char [] buff = new char[100];

int nchars = reader.read(buff, 0, 100);

// close the input stream

reader.close();

Character Sets

Java API docs list names of character sets.

InputStreamReader reader

 = new InputStreamReader(inputStream, "charset");

Charset Name Description

ASCII ASCII 7-bit encoding

ISO8859_1 ISO 8859-1 Latin alphabet No. 1

Cp874 IBM (DOS) Thai encoding

MS874 MS Windows Thai encoding

TIS620 TIS-620, Thai encoding

UTF-8 8-bit UTF encoding

UTF-16 16-bit UTF encoding

BufferedReader class

BufferedReader reads input as Strings.

It uses a Reader to read characters

BufferedReader breader = new BufferedReader(
 new InputStreamReader(System.in));

// read a line
String s = breader.readLine();

Buffered Reader methods:
int read() - read next char

int read(char[], start, count) - read chars into array

String readLine() - return a string containing rest of the line

close() - close the reader

BufferedReader for File Input

To read from a file, create a BufferedReader around a FileReader.

The ready() method returns true if (a) input buffer contains data

(e.g. reading from System.in or a pipe) or (b) underlying data source
is not empty (reading from file).

BufferedReader bin = new BufferedReader(
new FileReader("mydata.txt"));

// read some lines
while(bin.ready())
{

String s = bin.readLine();
// do something with the string

}
bin.close();

Input Streams and Readers

Java has a Reader class corresponding to common InputStream
classes.

InputStream Reader
InputStream InputStreamReader
LineNumberInputStream LineNumberReader
FilterInputStream FilterReader
FileInputStream FileReader
PipedInputStream PipedReader

Reading Binary Data
DataInputStream use readChar() method

of DataInputStream to
interpret data as characters

InputStream Hierarchy

Java provides a hierarchy of classes for processing input
from different sources and types.

Java Input Stream Class Hierarachy
InputStream

ByteArrayInputStream
FileInputStream
PipedInputStream
ObjectInputStream
SequenceInputStream
FilterInputStream

DataInputStream (binary input)
BufferedInputStream
LineNumberInputStream
PushbackInputStream

These are
"wrappers"
for another
input stream.

How to Read without Blocking

InputStream has an available() method that returns
the number of bytes waiting to be read.

Use this to read without blocking.

Reader classes have a ready() method.

InputStream in = System.in; // or whatever

// read whatever bytes are available
int size = in.available();
if (size > 0) {

byte [] b = new byte[size];
in.read(b); // this should not block

}

BufferedReader and End-of-Data

The readLine() method returns null if the end of input stream
is encountered. You can use this to read all data from a file.

String filename = "mydata.txt";
BufferedReader bin = new BufferedReader(

new FileReader(filename));
// read all data
String s;
while((s = bin.readLine()) != null)
{

// process data in String s
System.out.println(s.toUpperCase());

}
file.close();

Reader Class Hierarchy

Reading Binary Data

Examples:
 MP3 file, image file

Advantages:
 space efficient, can read quickly (little conversion)

InputStream instr = new FileInputStream("mydata");

DataInputStream data = new DataInputStream(instr);

try {

int n = data.readInt(); // 4 bytes

double x = data.readDouble(); // 8 bytes

char c = data.readChar(); // 2 bytes

} catch (IOException e) { ... }

End-of-File for DataInputStream

 Throws EOFException if end of input encountered
while reading.

InputStream fin = new FileInputStream("mydata");
DataInputStream data = new DataInputStream(fin);

double sum = 0;
while(true) {

try {
double x = data.readDouble(); // 8 bytes
sum += x;

} catch (IOException e) { ... }
catch (EOFException e) { break; } // EOF

}
data.close();

Scanner

java.util.Scanner is newer than the other classes.

Scanner "wraps" an InputStream or a String and
provides parsing and data conversion.

// scanner wraps an InputStream

InputStream in = new FileInputStream(...);

Scanner scanner = new Scanner(in);

// scanner to parse a String

String s = "Peanuts 10.0 Baht";

Scanner scan = new Scanner(s);

Reading with Scanner

Can test for presence of data.

Convert next token into any primitive or get entire line as
String.

Scanner scanner = new Scanner("3 dogs .5");
if (scanner.hasNextInt())

n = scanner.nextInt();
if (scanner.hasNext())

word = scanner.next();
if (scanner.hasNextDouble())

x = scanner.nextDouble();
// read and discard rest of this line
scanner.nextLine();

Parsing with Scanner

Can change separator character.

Can search using regular expressions.

Scanner scanner = new Scanner("aa,bb,999");
scanner.useDelimiter(",");
String word = scanner.next(); // = "aa"
String w = scanner.findInLine("\\d\\d\\d");
// w is "999"
\d is a regular expression for a digit 0-9

Output Classes

Three layers, just like Input hierarchy

 OutputStream: outputs bytes (low level)

 Writer: outputs characters (convert to bytes)

 BufferedWriter: outputs strings and lines. buffers data

Formatter: utility for creating formatted output. Can be
used as a pre-filter for an output stream or output to
any Appendable object.

OutputStream

 OutputStream writes bytes to some output sink.
 No interpretation of character sets.
 Works OK for text in system's default character set.

Output
Data

OutputStream out = ... ;
// write 1 byte
out.write(b);
// write array of bytes
out.write(byte[] b);
// flush buffered data
out.flush();
// close output stream
out.close();

OutputStream
object

Writer

 Writer converts UNICODE characters to bytes.
 Interprets chars according to character set encoding.
 Can handle any language (if you know the charset).

Output
Data
Set

OutputStreamWriter out =
 new OutputStreamWriter(
 System.out, "MS874");
// write one character
out.write(c);
// write array of characters
char [] ca = ...;
out.write(ca);

Writer
object

Character
Set

Output Streams and Writers

Java has several classes derived from OutputStream
and Writer. Each class handles a particular output sink.

OutputStream Writer
OutputStream OutputStreamWriter
FilterOutputStream FilterWriter
FileOutputStream FileReader
PipedOutputStream PipedWriter

StringWriter

Writing Binary Data
DataOutputStream use writeChar() or

writeChars() methods to
output UNICODE characters

Handling Exceptions

The Java input and output methods will throw an IOException if
there is an error in any input/output operation such read(),
write(), or print(). Your program must deal with this exception in
one of two ways:

1. Throw the exception..

public void myMethod throws IOException() {

// read and process the input

}

2. Catch the exception and take some action. This is illustrated on
the next slide.

Catching an Exception

BufferedReader myfile;
try {

myfile = new BufferedReader(
new FileReader(filename));

} catch (IOException e) {
System.out.println(

"Couldn't open file" + filename);
return;

 }
// read a line from file
try {

String s = myfile.readLine();
// do something with string

} catch (IOException e) {
System.out.println("Exception "+e
 + " while reading file.");

 }

Using Files

The FileInputStream, FileOutputStream, FileReader, and FileWriter
classes operate on File objects.

Create a File object by specifying the filename (and optional path):

File file1 = new File("input.txt"); // in "current" directory
File file2 = new File("/temp/input.txt"); // in temp dir
File file3 = new File("\\temp\\input.txt"); // same thing
File file4 = new File("/temp", "input.txt"); // same thing
File dir = new File("/temp"); // open directory as file

These commands do not create a file in the computer's
file system. They only create a File object in Java.

Testing Files

The File class has methods to:
 test file existence and permissions
 create a file, delete a file
 get file properties, such as path

File file = new File("/temp/input.txt"); // file object

if (file.exists() && file.canRead()) // OK to read
FileInputStream fin = new FileInputStream(file);

if (! file.exists()) file.createNewFile(); // create a file!
if (file.canWrite()) // OK to write

FileOutputStream fout = new FileOutputStream(file);

More File Operations

File file = new File("/temp/something.txt"); // file object

if (file.isFile()) {
/* this is an ordinary file */
long length = file.length();
long date = file.lastModified();

}

if (file.isDirectory()) {
/* this is a directory */
File files [] = file.listFiles(); // read directory

}

File objects can tell you their size, location (path),
modification time, etc. See the Java API for File.

File Copy Example

File infile = new File("/temp/old.txt");
File outfile = new File("/temp/new.txt");
if (outfile.exists()) outfile.delete();
outfile.createNewFile();

FileReader fin = new FileReader(infile);
FileWriter fout = new FileWriter(outfile);
// reading char at a time is very inefficient
int c;
while ((c = fin.read()) >= 0) fout.write(c);
fin.close();
fout.flush();
fout.close();

Copy a file. Realistically, you should test file existence
and permissions, catch IOException, etc.

Pipes

PipedOutputStream pout = new PipedOutputStream();

PipedInputtStream pin = new PipedInputStream(pout);

PrintStream out = new PrintStream(pout);

BufferedInputStream in = new BufferedInputStream(pin);

out.println("data into the pipe"); // write to the pipe

String s = in.readLine(); // read from the pipe

Reading and writing pipes: one method writes data into the pipe,
another method reads data from the pipe.

Very useful for multi-threaded applications.

PipedOutputStream pout =
 new PipedOutputStream();

PipedInputStream pin =
 new PipedInputStream(pout);

Access Order

InputStream and Readers read the input from start to
end.

OutputStream and Writers write the output from start to
end.

This is called Sequential Access.

Sequential Access

 Read/write everything starting from the beginning.
 Sequential:

 Cannot "back up" and reread or rewrite something.
 Cannot "jump" to arbitrary location in stream.

 InputStream and OutputStream use sequential I/O.
 InputStream has a skip(n), but it is still sequential.

eS q u i a l I O. . .e n t

int a = instream.read(); // read a = 'S'
byte [] b = new byte[10];
int count = instream.read(b); // read next 10 bytes

Random Access

 Can move to any location using seek() method.
 Can move forward and backward.
 Only makes sense for files.

aR n d A c c I O. . .o m

File file = new File("c:/data/myfile.txt");
RandomAccessFile rand =
 new RandomAccessFile(file, "r");
rand.seek(9L); // goto byte 9
int b = rand.read();

RandomAccessFile

 Random Access I/O means you can move around in
the file, reading/writing at any place you want.

 For output, you can even write beyond the end of file.
 Use seek() to move current position.

RandomAccessFile ra = new RandomAccessFile("name", "rw");

ra.seek(100000L); // go to byte #100000

byte [] b = new byte[1000];

// all "read" methods are binary, like DataInputStream

ra.readFully(b); // read 1000 bytes

ra.seek(200000L); // go to byte #200000

ra.write(b);

More Information

In the Sun Java Tutorials (online)

I/O: Reading and Writing
http://java.sun.com/docs/books/tutorial/essential/io/

Handling Errors with Exceptions
http://java.sun.com/docs/books/tutorial/essential/exceptio
ns/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

