
  

Defining Your Own Class

James Brucker



  

Where's the Code?

In Java, all source code is contained in classes.

A class defines a kind of object.

Class defines the object's: 

attributes, behavior, and construction.

You create objects from a class.

What is "static"?
Explained at end of slides



  

Class Structure

package coinpurse;

import java.util.List;

/**
 * Describe this class.
 * @author Your Name
 */

public class Coin {

}

static attributes

instance attributes

constructors

methods

This is the 
standard order of 
class members. 
Please use it.



  

Attributes

attributes of a Coin: 

a Coin has a value and 
currency.

Attributes are what an object knows.

To refer to something, it must be a variable.

public class Coin {

   private double value;

   private String currency;

} Not static



  

Declaring Attributes

public class Coin {

/** value of coin */

private double value;

Visibility

public

protected

(default)

private

Data Type

primitive

class name

interface

array

Variable Name

name of attribute

should start with 
lowercase

Javadoc for attribute



  

Initialize All Your Attributes!

public class Coin {
private double value;
private String currency = "THB";

/** initialize a new coin */
public Coin( double value ) {
this.value = value ;

}

Initialize attributes in either:

• assign a value as part of declaration, or

• (better) initialize in a constructor



  

Constructor Initializes a New Object

public class Coin {

 /** initialize a new coin */

 public Coin( double value ) {

       this.value = value ;

 }

Coin ten = new Coin( 10 );

Constructor has the same name as the class.

Does not have a return value.  Not even "void".

this means "this object".  "this.value" means the value 
attribute of this object.

this is used to resolve ambiguity.



  

How Objects are Created

c = new Coin( 10 ) JVM creates object in memory

// constructor's job is to
// initialize a new object
public Coin( double value ) { 
    this.value = value;
}

initialize state of object by 
invoking a constructorJVM returns the 

address of object

c = Coin@AE084D

Coin

value=10.0
currency=THB



  

What is wrong with this Code?

public class Coin {

 private double value;

   public void Coin(double value) {

       this.value = value;

   }

This code has legal syntax, 
but it is not a constructor.



  

More than One Constructor

public class Coin {
public Coin( ) {
this.value = 0;
this.currency = "THB";

}
public Coin(double value) {
this.value = value;
this.currency = "THB";

}
public Coin(double value, 

String currency) {
this.value = value;

    this.currency = currency;
  }

A class can have 
many constructors,

if they have different 
parameters.



  

Default Constructor

public class Coin {

private double value;

public Coin( ) {

   this.value = 0 ;

   this.currency = "THB";

}

Coin zero = new Coin(  );

A constructor with no parameters is called the default 
constructor.



  

Avoid Duplicate Code

public class Coin {
public Coin( ) {
this.value = 0;
this.currency = "THB";

}
public Coin(double value) {
this.value = value;
this.currency = "THB";

}
public Coin(double value,String currency){
this.value = value;
this.currency = currency;

These 3 constructors 
all do the same thing.



  

Constructor calls Constructor

  public Coin( ) {
this( 0.0, "THB");

  }
  public Coin(double value) {

this( value, "THB");
  }
  public Coin(double value, String curr) {

   if (value < 0)
 throw new IllegalArgumentException(...);

   this.value = value;
   this.currency = curr;

  }

A constructor can call another constructor using "this()", 
but it must be the first statement in constructor.



  

Attributes for Knowing Things

An object has to remember information.

The attributes (defined in class) are what an 
object knows.



  

Attributes are what an object knows

Purse
capacity: int

coins: Coin[*]

getBalance( )

insert( Coin )

isFull( )

withdraw( amount )

Attributes -

what a Purse knows

Methods -
what a Purse can do



  

Defining an Attribute

Attributes should be defined near the start of class.

Attribute has a visibility, data type, and name.

You can optionally initialize its value.

class Coin {

    private double value = 0;

Accessibility:
private
protected
(default)
public 

The type of 
value to store.  

The name of 
this attribute

Memory

0.0



  

See the attributes of an Object

In BlueJ, you can "inspect" attributes of an object.

1. Create a new java.awt.Point: 
               Point p = new Point(3,10);

2. Right click and choose "Inspect".

3. What are the attributes?

Attributes of an 
object are also 
called "fields" or 
"properties".



  

Visibility and Accessibility

The same rules apply to both attributes and methods.

public - can be accessed from any code, anywhere

protected - can only be accessed by this class, objects of 
this class, subclasses, or other classes/objects in same 
package

(default) - "package scope". Can be accessed by classes or 
objects in the same package as this class.

private - only this class and objects of this class can access

most visible

least visible



  

Private attributes

Private attribute can be accessed only by code in same class  

public class Coin {

   private double value;

   public double add(Coin c) {

      return this.value + c.value;

   }

public class Purse {

   public double add(Coin c1, Coin c2) {

      return c1.value + c2.value;//ERROR

OK to access private 
attribute of another Coin

Cannot be accessed by other classes: 



  

Protected attribute

Protected is mainly used for inheritance.  
Protected also gives package-level access.

package coinpurse;

public class Coin {

   protected double value;

package coinpurse;

public class Purse {

   public double add(Coin c1, Coin c2) {

      return c1.value + c2.value; //OK

Can be accessed in other classes in same package: 



  

Encapsulation

Protect your object's data from corruption!

Restrict access to object's attributes and methods.

attributes - usually private

methods - public for others to use

               - private for "internal use only" code

               - protected for use by subclasses and friends



  

Encapsulation Example

Coin hides its attributes, but provides "get" methods.

public class Coin {

   private double value;

   private String currency;

   public double getValue() {

       return value;

   }

   public String getCurrency() {

       return currency;

   }



  

Accessor methods:  getValue()

An accessor method returns the value of an attribute.

Name begins with get_____( )

Capitalize the next letter:  getValue( ), getCurrency( )

   public double getValue() {

       return value;

   }

   public String getCurrency() {

       return currency;

   }



  

Boolean accessor:  isOn(), hasX( )

Accessor method for boolean values begins with is___( ) 
or has___( ).

Capitalize the next letter:  isOn( ), hasNext( )

public class LightBulb {

   /** Return true if light is on */   

   public boolean isOn() {

       return on;

   }



  

Accessor can be a Computed Value

Some accessors compute the value on demand.

Example: GradeBook should not have a total attribute.  
Compute it as needed.
class GradeBook { // student scores
   private List<Double> scores;
   public double getTotal() {
      double total = 0.0;
      for(double s: scores) total += s;
      return total; 
   }
   public void addScore(double score) {
       scores.add( score );
   }



  

this - always refers to "this object"

this is a special variable that refers to "this object".

Use "this" to resolve ambiguity in constructors and 
methods.  But don't overuse it.

class Person {
   private String name;
   public Person(String name) {
      this.name = name;
   }
   public String getName() {
      return name;  // same as this.name
   }



  

this - sometimes used for clarity

equals() compares two people by name.  We don't really  
need to write "this.name", but it is added for clarity.

class Person {
   private String name;

   /** Test if two people have same name */
   public boolean equals(Person other) {
      if (other==null) return false;
      return this.name.equals(
                       other.getName() );
   }

Note: you should not write equals()like this.  Its done here for brevity.



  

3 Types of Variables

An object has access to 3 kinds of variables:

Attributes of the object

Static attributes of the class

Local variables and parameters (inside one method)



  

Local Variables

Variables defined inside a method are local variables.

(1) can only be used inside the method

(2) deleted when the method returns

public class Purse {

  public int getBalance( ) {

    int balance = 0;

    for(int k=0; k<coins.size(); k++) {

        // add coins.get(k) to balance

    }

Local 
variables are 
defined inside 
a method.



  

Local Variables vs. Attributes

An attribute is something an object remembers for its whole life.

A local variable is for temporary data.  The value is lost when 
execution leaves the method.

public class Purse {

  private int capacity;

  private List coins;

  public int getBalance( ) {

    int balance = ...;

    return balance;

  }

A purse must 
remember its capacity 
and coins

balance is computed each 
time we need it.  
Don't need to remember. 



  

Person refers to Person

An object can have attributes that refer to other objects of 
the same class.   This is quite common.

class Person {
   private String name;
   private Person father;
   private Person mother;
   public Person(String name) {
      this.name = name;
   }
   public void setFather(Person f) {
      father = f;
   }



  

Methods

 The behavior of objects is defined in methods.

 Methods contain the program's logic.

String makeMessage(int guess, int secret ) {
if guess == secret

return "You're right!"
else if guess < secret

return "guess is too small"
else return "guess is too large"

}

name of method

instructions for this 
method



  

static: class attributes & methods

static members (attributes and methods) are provided by 
the class, but...

Not associated with any object. 

// static method of String class

String.format("total is %2.f", total);

// instance method - associated with a

// String object

String s = "hello, nerd";

int n = s.length();



  

Objects can access static members

Student object can access static nextId field.

public class Student {

    static long nextId = 6010540001L;

    private long id; // id of this student

    private String name;

    /** initialize a new student */

    public Student(String name) {

        this.name = name;

        this.id = nextId;

        nextId++;

    }



  

Static methods cannot access 
instance members

Static code cannot access object attributes or methods

public class Person {

    private String name;

    public String toString() {

       return "My name is "+name;

    }

    public static void main(String[] args){

       System.out.println( name ); ERROR

       System.out.println(

              Person.toString() ); ERROR  



  

Static Method as Service

Static methods are often "services".  Something that the 
class does, but is not associated with any object.  

Get the current system time in milliseconds:

System.currentTimeMillis(  );

Name of Class static method name



  

Utility methods provided by class

Square root:  

   double r = Math.sqrt( 2 );

Get the int value of a String:

   int value = Integer.parseInt("123");

Get the name of current user (a service):

String who = System.getProperty("user.name");

These methods are performed by the class, not an object.



  

Writing static methods

You already know this.

/** distance between points (x1,y1) and (x2,y2) */

public static double distance( x1, y1, x2, y2 ) {

// hypot computes hypothenous of a triangle

double d = Math.hypot( x1 - x2, y1 - y2 );

return d;

}

public static void main(String[] args) {

  // start the application

}



  

Find the Errors
2 syntax errors and 1 semantic error (but syntax is legal).
public class Person {

    private static String name;

    /** initialize a new person */

    public Person(String name) {

        this.name = name;

    }

    public void setName(String newname){

        name = newname;

    }

    public static void main(String[] args) {

        this.setName( args[0] );

    }



  

Find the Error
What is wrong with this code?  How to correct it?

It returns correct value only the first time it is called.

public class GradeBook {

   private double[] scores = ...;

   private double total = 0.0;

   public double getTotal( ) {

      for( double score: scores ) {

         total += score;

      }

      return total;

   }


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

