

Introduction to Inheritance

These slides cover the basics of inheritance.

For deeper understanding, see the textbook and assignments.

What is Inheritance?

Superclass
more

general

Subclass
more

specialized

is ais a

UML for inheritance

One class incorporates all the attributes and behavior
from another class -- it inherits these attributes and
behavior.

 A subclass inherits all the
attributes and behavior of the
superclass.

 Subclass can redefine some
inherited behavior, or add
new attributes and behavior.

Terminology

Different names are used for inheritance relationships.

They mean the same thing.

Actor Animal

parent class
superclass
base class

child class
subclass
derived class

Actor
more

general

Animal
more

specialized

"Specializing" or "Extending" a Type

Consider a basic Car.

What is the behavior of a Car?

An AutomaticCar is a special kind of
Car with automatic transmission.

AutomaticCar can do anything a Car
can do.

It also adds extra behavior.

Car

start()
stop()
accelerate()

AutomaticCar

drive()

start()
stop()
accelerate()

Benefit of Extending a Type

Extension has some benefits:

Benefit to user

If you can drive a basic Car,
you can drive an Automatic Car.
It works (almost) the same.

Benefit to producer (programmer)

You can reuse the behavior from
Car to create AutomaticCar.
Just add automatic "drive".

Car

start()
stop()
accelerate()

AutomaticCar

drive()

start()
stop()
accelerate()

What do you inherit?

A subclass inherits from its parent classes:

 attributes

 methods - even private ones.

 cannot access "private" members
of parent

SavingAccount
deposit(amount)

Object

Account
accountId
owner
dateCreated
Account()
...In Java, Object is a

superclass of all classes.

Any method that Object
has, every class has.

Java Syntax for Inheritance

Use "extends" and the parent class name.

class SubClass extends SuperClass {
 ...
}

class SuperClass {
 ...
}

Interpretation of Inheritance (1)

Superclass defines basic
behavior and attributes.

Account

- accountName
- accountId
balance
+ deposit(Money) : void
+ withdraw(Money) : void
+ toString() : String

SavingAccount

+getInterest(): double

+withdraw(Money) : void

+toString() : String

Interpretation of Inheritance (2)

A subclass can...

 add new behavior and
attributes (extension)

 redefine existing
behavior (specialize)

Account

- accountName
- accountId
balance
+ deposit(Money) : void
+ withdraw(Money) : void
+ toString() : StringSubclass can override

methods to specialize its
behavior.

SavingAccount overrides
withdraw and toString.

Attributes and Inheritance

class SavingAccount extends Account {

 public String toString() {

 m = balance;

 id = getAccountId();

Subclass can access:

1) public and protected attributes of parent

2) cannot access private attributes. Must use an
accessor method (of the parent class)

protected member of Account

private accountId of Account -
use accessor ("get") method.

Object: the Universal Superclass

 All Java classes are subclasses of Object.

 You don't write "... extends Object".

Object defines basic methods for all classes:

java.lang.Object
#clone() : Object

+equals(Object): bool

+finalize() : void

+getClass() : Class

+hashCode() : int

+toString() : String

+wait() : void

Every class is
guaranteed to have
these methods.
Either:
(1) inherit them

(2) override in subclass

Specializing from Object

 Most classes want to define their own equals and
toString methods.

 This lets them specialize the behavior for their type.
 Java automatically calls the class's own method

(polymorphism).

Coin

+equals(Object): bool

+hashCode() : int

+toString() : String

Coin overrides these
methods for Coin
objects.

Object

Constructors and Inheritance

To build a building...

 first you build the foundation

 then build the first floor

 then build the second floor

 etc.

Foundation (Object) Foundation (Object)

Floor 1 (Subclass)

Floor 2 (Subsubclass)

Constructors and Inheritance

Example: Double is subclass of Number

Double d = new Double(1.0)

What happens?

Number

Object

Double

Constructors and Inheritance

Building a Double object:

 initialize the foundation object (Object)

 initialize the 1st subclass object (Number)

 initialize the 2nd subclass object (Double)

Double d = new Double(1.0);

Object
Number

Object

d : Double

Number

Object

Calling a Superclass Constructor

When you invoke an object's constructor, it always calls
a constructor of its superclass.

Example:

 Double d = new Double(1.0);

 implicitly calls Number(), which calls Object().

Object
Number

Object

Double

Number

Object

super()

super()

new Double(1.0)

2 Ways to Call Superclass Constructor

 explicitly write super() to invoke super constructor

 implicitly invoke the superclass default constructor.
Java compiler does this if you don't explicitly call
"super(...)".

Object
Number

Object

Double

Number

Object

super()

super()

Explicitly Call Superclass Constructor

 A subclass can call a superclass constructor using the
reserved name: super(...)

super must be the first statement in the constructor.

public class Account {
public Account(String acctId) {

// constructor for objects of Account class
}

}

public class SavingAccount extends Account {
public SavingAccount(String acctId, String name)

 {
super(acctId);

}
}

Implicit call to superclass Constructor

public class Object {
public Object() { /* constructor for Object class */ }

public class Number extends Object {
public Number() { // default constructor

 }

public class Double extends Number {
public Double(double value)
{

 this.value = value;
}

 If a class does not explicitly call a "super" constructor,
then Java will automatically insert a call to super()

 Java calls the superclass default constructor

super()

super()

Error in automatic call to super()

public class SavingAccount extends Account {
public SavingAccount(String acctId, String name)

 {

 // initialize SavingAccount attributes

this.name = name;
}

 If superclass does not have a default constructor, you
will get an error from compiler. In SavingAccount:

The Java compiler issues an error message:

Implicit super constructor Account() is
undefined.

implicit call to super()

Why the Error?

Account doesn't have a default constructor, so we
get an error.

 This error is good!

It tells us that we must invoke the right constructor of
Account.

Lesson:

 If superclass does not have a default constructor, then
subclasses must explicitly write: super(arguments)

A Class has only One Parent Class

A class can directly extend only one other class.

A class cannot have two parent classes.

Subclass

+ equals(Object): bool

+ toString() : String

Parent AnotherParent

X
C++ has multiple inheritance,
but it is complex. Java, C#,
and Python allow only single
inheritance.

Number: parent of numeric classes

 Another prodigious parent class is Number.
 Number defines methods that all numeric classes must

have, but does not implement them (abstract methods).

Number
shortValue()
intValue()
longValue()
floatValue()
doubleValue()

Short Long Float Double

BigInteger BigDecimal

Object

Integer

These methods are
abstract in Number.
This means the
subclasses are
required to
implement them

Polymorphism using Number

public void display(Number num) {

System.out.println("The value is "+num.intValue());

}

display(new Integer(10));

display(new BigDecimal(3.14159));

The value is 10

The value is 3

Question: What O-O fundamental enables display to accept a
parameter of type Integer or BigDecimal?

Inherited Methods

Object

#clone()

equals(Object)

finalize()

getClass()

hashCode()

toString()

wait()

class Money {

public double getValue() {...}

public boolean equals(Object)

 ...

extends
new behavior

override behavior

Inherited Methods

Object

#clone()

equals(Object)

finalize()

getClass()

hashCode()

toString()

wait()

Money

#clone()

equals(Object)

finalize()

getClass()

hashCode()

toString()

wait()

getValue():

Summary: Override vs New Method

public class Money {

public int compareTo(Money other)

}

public class Coin extends Money {

 @Override // this tag is not required

public int compareTo(Money other)

}

Override method must match the signature of a
superclass method:

What Can Override Methods Change

public class Purse {

protected List withdraw(double amount)

}

public class MyPurse extends Purse {

public ArrayList withdraw(double amount)

}

Override method can change 2 things in the signature:

(1) can be more visible than parent method

(2) return type can be a subtype of parent's return type

New Method, not Override

public class Money {

public int compareTo(Money other)

}

public class Coin extends Money {

 public int compareTo(Coin other) // new method

 public int compareTo(Coin a, Coin b) // new method

 public boolean equals(Coin other) // new method

Any other change in the method signature defines a
new method, not an override of parent method.

Why write @Override ?

public class Money {

 @Override // Compile Error: invalid "override" (wrong param)

 public boolean equals(Money other) {

 return this.value == other.value;

 }

 // Typing error: new method "tostring" should be toString

 @Override

 public String tostring() {

 return "Money, money";

 }

Enables compiler to detect accidental misspelling, etc.

If you write @Override,
the compiler will warn
you of misspelled
"toString"

Two uses of @Override

public class Money {

 @Override

 public String toString() {

 return "some money";

 }

1. In Java 5, @Override always meant "override a method"

2. In Java 6+, @Override can also mean "implements"

public class Money implements Comparable<Money> {

 @Override

 public int compareTo(Money other) {

 . . .

 }

Cannot Override

 Constructors

 static methods
 private methods

 final methods

Subclass can define a new
method with same name.

Redefining final methods is
not allowed.
Compile-time error.

Preventing Inheritance: final class

A "final" class cannot have any subclasses.

String, Double, Float, Integer, ... classes are final.

All "enum" types are final.

public final class String {

...

}

Prevent Overriding: final methods

 A "final" method cannot be overridden by a subclass.
 final is used for important logic that should not be changed.

public class Account {

// don't let subclasses change deposit method

public final void deposit(Money amount) {

...

 }

final method

public class Money {

public final double getValue() { return value; }

}

public class Coin extends Money {
// Error - override not allowed
public double getValue() { ... }

Question: Does Object have any final methods?

Why should they be final?

Inheritance of Attributes

1. subclass object inherits all attributes of the parent class
(even the private ones).

 subclass cannot directly access private attributes of the
parent -- but they are still part of the object's memory!

2. subclass can shadow attributes of the parent by defining a
new attribute with the same name.

 shadow creates a new attribute having same name as
parent's attribute, but the parent's attributes are still
there (just hidden or "shadowed").

 this is rarely used -- not good design.

Inheritance of Attributes

B b1 = new B(12345, "baby")

B

protected long id

private char[] name

A

private int id
public String name

b1: B

long id = 1234567890

char [] name = { 'b','a','b','y' }

(hidden) int id = 0

(hidden) String name = "unknown"

In memory...

Summary of Important Concepts

Subclass has all behavior of the parent

 A subclass inherits the attributes of the superclass.

 A subclass inherits behavior of the superclass.

 Example:

Number has a longValue() method.

Double is a subclass of Number .

Therefore, Double must also have a longValue()

class Animal {

void talk() { console.print("grrrrr"); }

}

class Dog extends Animal {

void talk() { console.print("woof"); }

}

void main() {

Animal a = new Dog();

a.talk(); <--- which talk method is invoked?

}

Java Example

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

