
Fundamental Methods

Important common methods

Methods Inherited from Object

 Every class inherits methods from Object.

 Some methods are key to object behavior

java.lang.Object
#clone() : Object

+equals(Object): bool

+finalize() : void

+getClass() : Class

+hashCode() : int

+toString() : String

+wait() : void

How the Methods are Used

toString() - implicitly invoked whenever Java needs to
display (or copy) object as a String:

System.out.println(x); // calls x.toString()

String greet = "Hello, "+person; // person.toString()

equals(Object other) - test for equality. Used by
List.contains(something), List.indexOf(something).

List<Course> courses = Registrar.getMyCourses();

Course prog1 = new Course("01219114","Prog 1",3);

if (courses.contains(prog1)) ...

toString()

public class MenuItem {

 @Override

 public String toString() {

 return itemName;

 }

Most classes should define their own toString() method.

Exceptions:
 inherits a usable toString() from a parent class
 object is not intended to be printed; e.g. controllers, UI classes,

"transport objects", utility classes like Math or Arrays.

@Override (annotation) is optional. Used by compiler to detect
accidental misspelling.

Course without "equals"

public class Course {

 private final String id;

 private String name;

 private int credits;

 public Course(String id, String name, int cred) {

 this.id = id;

 this.name = name;

 this.credits = cred;

 }

 ... get/set methods, but no "equals"

final means you cannot change the value after it is set the first time.
final attributes must be set in a constructor.

Use of "equals"

Course c1 = new Course("01219114","Programming",3);

Course c2 = c1;

System.out.println(c1 == c2); // true

System.out.println(c1.equals(c2)); // also true

// but...

c2 = new Course("01219114","Programming",3); //same!

System.out.println(c1.equals(c2)); // false

Course does not define "equals" method,
so it inherits "equals" from Object.
What does object.equals() method do?

Object.equals() is just ==

public class Object {

 public boolean equals(Object obj) {

 return this == obj;

 }

The Object equals method is same as ==

This is (usually) not what we want.

Collections (List, Set) use equals

List<Course> courselist = new ArrayList<Course>();

Course c1 = new Course("01219114","Programming",3);

Course c2 = new Course("01219114","Programming",3);

courselist.add(c1);

// what courses have I enrolled in?

courselist.contains(c1) // true

courselist.contains(c2) // false

When should 2 Courses be equal?

1. Depends on the application.

2. Should be clearly defined and documented.

Course Enrollment Application

- a department might change the name of a course.

- Registrar relies on course ID to decide if student has
taken a course, assigning grades, prerequisites, etc.

When should 2 Courses be equal?

Course Enrollment Application:

- a department might change the name of a course.

- Registrar relies on course ID to decide if student has
taken a course, assigning grades, prerequisites, etc.

Therefore (design decision):

 Two courses are equal if the id is same (even if String
name is different).

Writing equals()

public class Course {

 /** Two courses are equal if they have same id.

 */

 @Override

 public boolean equals(Object obj) {

 if (obj == null) return false;

 if (obj.getClass() != this.getClass())

 return false;

 // cast it to Course so we can get attributes

 Course other = (Course)obj;

 // Finally! compare course IDs (as Strings)

 return this.id.equals(other.getId());

 }

4-Step Template for equals()

@Override

public boolean equals(Object obj) {

 if (obj == null) return false; //1

 if (obj.getClass() != this.getClass()) //2

 return false;

 // cast to this class so we can get attributes

 Course other = (Course)obj; //3

 // Finally! compare this and other the way your

 // application wants.

 return ______________________________; //4

 }

Must be "Object" not Course

4-Step Template explained

@Override

public boolean equals(Object obj) {

 1. Check that argument is not null

 if (obj == null) return false;

 2. Argument must be same class as this class

 if (obj.getClass() != this.getClass())

 return false;

 3. Cast to this class so we can get attributes

 Course other = (Course)obj;

 4. Compare this and other as your app requires

 return this.id.equals(other.getId());

 }

Must be "Object" not Course

Why are these 4 steps necessary?

@Override

public boolean equals(Object obj) {

 1. Required to avoid NullPointerException later

 if (obj == null) return false;

 2. Can't compare Course & Dog or Course & String

 if (obj.getClass() != this.getClass())

 return false;

 3. "Object" doesn't have attributes of a Course

 Course other = (Course)obj;

 4. Domain logic. Why we wrote this method!

 return this.id.equals(other.getId());

 }

Find 4 Errors

public class Course {

 private final String id;

 @Override

 public boolean equal(Object obj) {

 if (obj.getClass() != this.getClass())

 return false;

 if (obj.equals(null)) return false;

 Course other = (Course)obj;

 // compare course IDs (Strings)

 return this.id == obj.id;

 }

Find the Errors, again

public class Course {

 private final String id;

 public boolean equals(Course obj) {

 if (obj == null) return false;

 Course other = (Course)obj;

 // compare course IDs (Strings)

 return this.equals(other.getId());

 }

Don't write nested if - Points deducted

@Override

public boolean equals(Object obj) {

 boolean check = false; // no var named "check"!

 if (obj != null) {

 if (obj.getClass() == this.getClass()) {

 Course other = (Course)obj;

 if (this.id.equals(other.getId())

 check = true;

 }

 }

 return check;

}

1. Harder to follow the logic.
2. Possible "dangling else" error.

Practice - write equals

public class Money {

 private String currency;

 private double amount;

 /**

 * Money objects are equal if & only if

 * the currency and amount are the same.

 */

 public boolean equals(Object obj) {

 //TODO

 }

On paper or in an editor, write equals for the Money class.

Two Money objects are equal if the amount and currency are same.

Solution

/**

 * Money objects are equal if & only if

 * the currency and amount are the same.

 */

 public boolean equals(Object obj) {

 //TODO

 }

A variation on equals

@Override

public boolean equals(Object obj) {

 1&2. obj is not null and an instance of

 this class or a subclass of this class

 if (!(obj instanceof Course)) return false;

 3. Cast it to our class to access the attributes

 Course other = (Course)obj;

 4. Domain logic: When are two objects equal?

 return this.id.equals(other.getId());

 }

Sometimes it makes sense for objects of different classes
to be "equal". (Don't write this on exam, unless specified.)

Other Important Methods to Know

int hashCode() - hash of object data, used by
HashSet, HashMap, and some other collections.
Should be consistent with equals:

 a.equals(b) => a.hashCode() == b.hashCode()

 but not the converse.

clone() - make a deep copy of an object.
 This is covered in OOP2.

Reference

Big Java, 5E

Oracle Java Tutorial
 toString(), equals(), Object class

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

