

Java Program Structure

Introduce basic Java program structure.

James Brucker

Structure of Java source code

import java.util.Scanner;
import java.time.LocalDate;
/**
 * A simple class.
 * @author Bill Gates
 */
public class Greeter {

}
// ERROR - don't write code here

 2. Javadoc comment.

1. "import" other classes

Start of the class

End of the class

{ } define a "scope"

public class Greeter {

public static void main(String [] args)
{

 }
}

The { and }
braces indicate the
start and end of
the code for this
class.

In Java, { ... } defines a block
of code. You will see { }
blocks used in many ways.

Define a method

public class Greeter {

public static void methodName() {

 statement1;
 statement2;
 statement3;

 }

}

method name starts
with lowercase

scope of method is
defined by { ... }

main method

public class Greeter {

public static void main(String[] args) {
 System.out.print("Who are you?");
 statement2;
 statement3;

 }

}

to execute a class as
a program, it must
have a main method
exactly like this

Local Variables

public class Greeter {

public static void sayHello() {
 String greet = "Hello.";
 System.out.println(greet);
 int counter = 0;
 . . .

 }
 public static void main(String[] a) {
 sayHello();
 // error: counter is not defined here
 System.out.println(counter);
}

Local variables are
declared inside a
method. They only
exist while method
is executing.

class can have many methods

public class Greeter {

 public static void method1() {
 System.out.print("This is method1");
 }

 public static void method2() {
 System.out.print("This is method2");
 }

 public static void main(String[] args) {
 method1();
 method2();
 method1(); // call method1 again

 }
}

a class can have
many methods, using
different names.

3 Kinds of Comments

/**
 * Javadoc comment describes this class.
 */
public class Greeter {
 /*
 A multi-line comment can be
 very long.
 */
 public static void method1() {
 // a single line comment
 System.out.print("This is method1");
 int n = 0; // another comment
 }
}

The compiler
ignores
comments.

Javadoc
comments
create online
documentation
for your code.

(static) attributes

public class Greeter {
 static String greet = "Hello.";

 public static void sayHello() {

 System.out.println(greet);
 . . .

 }

}

A variable defined
outside of a method
is an attribute of the
class.

Static attributes can
be used in any
method, but usually
in static methods.

Saving the Program

/** Print an impersonal greeting message
 * @author James Brucker
 */

public class Greeter {
 static String greeting = "Hello, ";

/* execution starts in the main method
The header (signature) line must
be as shown here.
 */
public static void main(String [] args) {
 String who = "Human";

 // print a message on terminal
 System.out.println(greeting + who);
 System.out.println("Goodbye, "

+ who);
}

}

The name of the file must be
exactly the same as the name
of the class in the file, with an
Extension ".java"

Filename:
Greeter.java

Filename: Bank.java

public class Bank { ... }

WRONG:

Filename: bank.java

public class Banking { ... }

General Program Structure

package greeting;
import java.util.Scanner;
import java.time.LocalTime;
/** Print an impersonal greeting message
 * @author James Brucker
 */
public class Greeting {
 public static final Strng GREET = "Hello";

private static int counter = 0;
 /** instance variable */
 private String name;
 /** constructor for new objects
 * @param name is person to greet
 */

public Greeting (String name) {
 this.name = name;
 }

public void greet() {
 System.out.println(GREET + name);

1. package name (optional)

2. import statement(s) - may have
many.

3. Javadoc comment for class

4. Start of the class

Contents of Class:

1. define constants first

2. static variables

3. instance variables

4. constructor(s) - optional

5. methods

6. private methods

method names: camelCase

Review

 In Java, all code must be part of a class.

 A class begins with the declaration:

public class SomeClassName

followed by the class definition inside { ... }

 "public" means that this class is visible to other classes.

 Inside a class, code is contained in methods.

 A method definition is delimited by { ... }

 This main method is where program execution begins.
The main method must have this header line:

public static void main(String [] args)

Review

 Inside a method we can define local variables and assign
values to them.

 To define a String variable and assign a value, use:

String variableName = "some value" ;

 To display a String on the console, we use:

System.out.println("Are you awake?");

A Thought Question

System.out.println("What does this mean?");

Q: What is System ?

Q: What is "out" in System.out ?

Q: What is "println" in System.out.println(...) ?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

