
Primitive Data Types

James Brucker

Primitive Data Types

 A primitive data type has only a value, such as a
number.

 Primitive types are things the CPU can directly
manipulate. Example: 2 + 3 (cpu can add int)

 Java has 8 primitive types, such as:
boolean
char
int
long
double

Data Type: Values and Operations

 A data type has a set of operations that it supports
 The operations are what make data useful!

Operations for int, long, float, and double are:

arithmetic: a + b, a - b, a * b, a / b, a % b (modulo)

comparison: a < b, a > b, a >= b, a == b (equality test)

negate: -a

Essential Information About a Data Type

1. what values can a data type store?

2. what operations can we perform on a data type?

int Data Type

1. what values can the int type store?

"int" can store integer values in the range

-2,147,483,648 to +2,147,483,647

int Operations

Arithmetic (result is int)

a + b

a - b

a * b

a / b

a % b a modulo b

Comparison (result boolean)

a < b

a > b

a <= b

a >= b

a == b

a != b
Operations that shift bits

a <<n shift bits left n times

a >>n shift right with sign

a >>>n shift right w/o sign

Bit mask operations

a | b bitwise "or" of a, b

a & b bitwise "and" of a, b

a ^ b bitwise exclusive or

Example using "int" type

Add the numbers 1 to 100.

int max = 100;

int sum = 0;

for(int k=1; k <= max; k++)

sum = sum + k;

System.out.println("sum is " + sum);

int Special Values

The Integer class has 2 special "int" values:

Integer.MIN_VALUE is the minimum value of "int" type.

Integer.MAX_VALUE is the maximum value of "int" type.

Rules for int operations

1. If the result is TOO BIG for "int" type, the higher order
bits are lost. The result will be incorrect:

 1,000,000,000 + 1,000,000,000 is 2,000,000,000

 2,000,000,000 + 1,000,000,000 is -1,294,967,296

2. On division of int/int the remainder is discarded.

 28 / 10 is 2

 -28 / 10 is -2

 1 / 2 is 0 even 999999 / 1000000 is 0

 1 / 0 is error. Throws DivisionByZero exception.

3. Modulo (%): m = a % b is such that b*(a/b) + m == a

 7 % 3 is 1, -7 % 3 is -1 but 7 % -3 is 1

Java Primitive Data Types

Name Values Examples

boolean true false true, false

char character 'a', 'A', '1', 'ก', 'ค', 'โ', '\t'
byte 8-bit integer -127, ..., -1, 0, 1, ..., 127

short 16-bit integer -32768 ... 0 ... 32767

intint 32-bit integer -400 47 20000000

long 64-bit integer -1234567890L 0L 888L

float decimal 3.14159F 0.0F -2.5E-8F

double 64-bit decimal 3.14159265358979E234

Primitive Data Types: values

Data Type Size in Memory Range of Values
boolean 1 byte true false
char 2 bytes 0 (null) - \uFFFF (Unicode)
byte 1 byte -128 to 127
short 2 bytes -32,768 to 32,767
intint 4 bytes -2,147,483,648 to

 2,147,483,647
long 8 bytes -9,223,372,036,854,775,808L

 9,223,372,036,854,775,807L
float 4 bytes ±3.402823E+38

double 8 bytes ±1.797693134623157E+308

double

1. Any number written with "." or exponential is
automatically of type double (not float).

double: 1.0 3.14159 2.99E+8 3e-12

2. If you do +, -, *, / with int and double, the result is a
double. The "int" value is promoted to double first.

 2 * 7.0 --> 14.0 (double)

 10.0 * 2 / 5 --> 4.0 (double)

 but: 2 / 5 * 10.0 -- > 0 ("2/5" is done first as int/int)

3. * , / , and % are always done before + and -

 1.5 + 10 * 7.0 --> 71.5

Special values: Infinity and NaN

Java uses the IEEE floating point standard.
There are 3 special values: +Infinity, -Infinity,
and NaN (not a number).

 2.5 / 0.0 is +Infinity

-2.5 / 0.0 is -Infinity

 0.0 / 0.0 is NaN (not a number)

Infinity * 0.0 is NaN

For int and long, n / 0 is error (DivisionByZeroException)
but for float and double, x / 0 is +/-Infinity.

Double class has special values

Java has a class named Double -- not same as primitive
type double. Double (class) has some special values:

 Double.POSITIVE_INFINITY

 Double.NEGATIVE_INFINITY

 Double.NaN

 Double.MAX_VALUE = 1.7976931348523E+308

 Double.MIN_VALUE = 4.9E-324

and some useful static methods:

Double.parseDouble("2.14") // returns primitive 2.14

Double.toString(2.14) // returns String "2.14"

What Data Type?

______________ 1234, -9999

______________ 6010541234 (in Java: 6010541234L)

______________ 3.14159 (what is this?)

______________ 3E+08

______________ 3000.0F

______________ true

______________ '2'

______________ "2"

______________ 'ด'

______________ 3 == 4

Rules for numeric values

 Java has rules for how it interprets numerical values.

Value Meaning

 4 an "int" value 4

 4L a "long" with value 4 (8 bytes) - must write L or l

4. a "double" with value 4.0

 3e4, 3.0E4, 3e+4 a "double" with value 3000.0 (3 x 10^4)

0.1 a "double" value 0.1 approximately

4.0F a "float" value 4.0 (4 bytes) - must write F or f

'4' a "char" with (int) value 52

Type Conversion

If your code contains: 2+3

then Java sees that you are adding int + int and
produces an int result (5).

But, if your code contains: 2+3.0

it means to add "int" + "double" values.

In this case, Java will convert 2 to a double (2.0) and
add 2.0+3.0. The result is a double.

Type conversion may also occur when you call a
method. For example: Math.sqrt(2)

The sqrt method requires a double parameter, so Java
"promotes" 2 (int) to 2.0 (double).

Automatic Type Promotion

If you do arithmetic on different data types, Java
"promotes" one argument to the type with widest range.

Example Promotion Result

2 + 4L 2 -> (long)2L 6L (long)

2 * 4.0 2 -> (double)2.0 6.0 (double)

2F + 3 3 -> (float)3F 5.0F (float)

2.0 * 3 3 -> (double)3.0 5.0 (double)

Weird:

'a'+1 'a' -> int (97) 98

double

float

long

int

short,char

byte

Type Promotion & Functions

If you invoke a function (method) using a numeric value,
Java may "promote" the values of arguments.

Example Promotion Then Call
Math.sqrt(2) 2 to 2.0 sqrt(2.0)
Math.max(2, 10.0F) 2 to 2.0F max(2F,10F)
Math.max(-1, -4L) -1 to -1L max(-1L,-4L)
Math.max(3, 2.236) 3 to 3.0 max(3.0,2.236)

double

float

long

int

short,char

byte

Type Conversion May Lose Precision

Java "type promotion" always perform a widening
conversions that will never "overflow" the result data type.

But it may lose precision (accuracy).

Example: (float)123456789 -> 1.2345679E+8

What about boolean?

boolean type (true, false) cannot be converted to
any other type!

This is done to prevent accidental errors.

A classic error in C programming is:

int n = 1;

if (n = 2) printf("its true!"); // set n=2, result is true!

should be:

if (n == 2) . . . ;

Common Type Errors

Here are some common errors.

What is the mistake? How to correct it?

// Compute typing speed in words/minute
int wordsTyped = 38; // number of words typed
int time = 45; // time in seconds
double speed = wordsTyped/time * 60.0; // speed = 0

// The midterm exam has a maximum of 90 points.
// "Normalize" the score to be 0-100 (e.g. 90 -> 100%).
int midtermScore = 85;
double score = 100.0 * (midtermScore / 90);

boolean values

 Boolean has 2 values: true or false
 Used for conditional execution of statements.
 Boolean is used in "if", "while", and "for" statements.

/** Compute the sales tax on a purchase */

public void getTax(int amount) {
boolean PAY_TAX = true;
double tax; // amount of tax owed
if (PAY_TAX) tax = 0.07 * amount;
else tax = 0.0;
System.out.println("The tax is: "+tax);

}

if (condition)
 statement1 ;
else
 statement2 ;

A javadoc
comment for
this method.

boolean operations

! b NOT b (!true -> false, !false -> true)

b1 && b2 b1 AND b2

b1 || b2 b1 OR b2

b1 ^ b2 b1 XOR b2 true if exactly one of b1, b2 is true

boolean hasDog = true;
boolean hasCat = false;

// test: does he have a dog or a cat?
if (hasDog || hasCat) petOwner();
// test: does he have dog or cat, not both?
if (hasDog ^ hasCat) happyPetOwner();
// does he have both dog and cat?
if (hasDog && hasCat) unhappyPetOwner();

boolean operations

It is always possible to rewrite ^ (exclusive or) using
AND, OR, and NOT (&&, ||, !)

Exercise: rewrite expression without using ^

boolean hasDog = true;
boolean hasCat = false;
happyPetOwner = (hasDog ^ hasCat);

// write happyPetOwner
// using only &&, ||, and !
happyPetOwner =

char for character data

 The char data type is for character data.
 Java uses 2-byte Unicode for character data, in order to

hold the world's alphabets. Including Thai.
 Unicode: http://www.unicode.org

// Get the first character from a String.
String word = "George Bush";
char first;
first = word.charAt(0);
System.out.println("The string "+ word

+ " begins with " + first);
// Get the last character from a String!
int last = word.length() - 1; // why -1 ??
first = word.charAt(last);

charAt() is
a method of
the String
class.

length()
returns number
of chars in a
string.

char values

 You can also use char to hold special values:

'\t' tab character

'\n' new-line character

'\u03C0' Unicode sequence number for (pi)

char TAB = '\t';
char NEWLINE = '\n';
char PI = '\u03C0';
// Print greek pi symbol
System.out.println("I love cake and "+PI);
// Use tab to align output
System.out.print("Hello" + NEWLINE

 + TAB + "world"+NEWLINE);

Must enclose
character
values in
single quotes

NOT
double quotes

Escape Sequences for special chars

These ‘\x’ values represent special characters:

Code Name meaning
\t Horizontal Tab advance to next tab stop
\n New line start a new line
\v Vertical Tab performs a vertical tab (maybe)
\f Form feed start a new page on printed media
\r Carriage return move to beginning of line
\0 Null null character, has value 0
\" Double Quote use for " inside of String
\' Single Quote use for ' inside of char
\\ Backslash display a \

byte, short for "raw" data

 byte and short are for integer data and input/output

 byte is used for low-level input, holding character codes (as 1
byte), and groups of "flag" bits

 byte and short are not used for arithmetic.
Java promotes all arithmetic to "int" data type.

/* read bytes of data into byte array.

 * This is soooo boring.

 */

byte[] b = new byte[80];

System.in.read(b); read() gets
input data as
bytes.

Detailed Look at Float & Double

The next few slides explain how float and double values
are stored.

You can skip them if you want.

But, to understand the behavior of arithmetic operations
it helps to know how values are stored.

float, double: Floating Point Data

Java has 2 data types for storing non-integer values,
called floating point because they store numeric data as
a mantissa and exponent.

01 1 1 0 1 0 1 1. . .

Sign bit Mantissa (implicit leading “1”) Exponent

-1.011100 x 211 = 1 1 0

Float: 1 bit 23 bits 8 bits

Double: 1 bit 52 bits 11 bits
Precision Range

Float: 24 bits =~ 7 dec. digits 10-38 - 10+38

Double: 53 bits =~ 15 dec. digits 10-308 - 10+308

float, double: Floating Point Data

Data Type Size of mantissa Accuracy (precision)

float 23 bits 6-7 decimal digits

double 52 bits 15 decimal digits

 Use double for most applications (more accurate).
 Use float where 6-decimal digits is enough, or you

need to optimize space/performance.

// Be careful when using floating point!
float x = 0.2F;
float y;
y = 1.0F - x - x - x - x - x; // should be zero!
System.out.println("y = "+y); // y = 2.9802322E-8

IEEE Floating Point Data Format

0 1 1 1 0 0 0 0 . . . 1 1 0 0 0 1 0 1 0

Sign bit Mantissa Biased Exponent

-1.011100 x 211 =

Float: 1 8 bits bias= 127 23 bits

Double: 1 11 bits bias=1023 52 bits

PrecisionRange

Float: 10-38 - 10+38 24 bits =~ 7 dec. digits

Double: 10-308 - 10+308 53 bits =~ 15 dec. digits

Stored exponent = actual exponent + bias

Wrapper Classes

Primitive Wrapper

boolean Boolean

char Character

byte Byte

short Short

int Integer

long Long

float Float

double Double

double root = Math.sqrt(2.0);

Double d1 = new Double(root);

// same thing: automatic boxing

Double d2 = root;

// print as a string

out.println(d2.toString());

// static method to make a string

out.println(Integer.toString(2));

Why Wrapper Classes?

1. Some methods and data structures only work with
references (e.g. objects).

Example: a List can only contain references.

If we want a List of double, we need to "wrap" each
double in an object.

// ERROR: can't create a list of primitives

ArrayList<double> list = new ArrayList<double>();

// CORRECT: use wrapper for double

ArrayList<Double> list = new ArrayList<Double>();

// Java automatically "wraps" 2.0 in a Double

list.add(2.0);

Why Wrapper Classes?

2. Primitives don't have methods. The wrappers provide
useful methods and static constants.

Example: get the double value of a String.

// convert a String to a double

double x = Double.parseDouble("2.98E_08");

// convert double to a String

x = Math.sqrt(x);

String value = Double.toString(x);

Example: what is the largest value an "int" can store?

int max = Integer.MAX_VALUE;

Wrapper to convert to/from String

int n = 1234;

// convert n to a String

String id = Integer.toString(n);

String s = "2.5";

// convert s to a double?

Range limits of numeric types

 What is the largest "int" value?
 What is the smallest "long" value?
 What is the range (smallest, biggest) of double?

int biggest =

long smallest =

double minimum =

double maximum =

What happens if you go beyond?

int n = Integer.MAX_VALUE;

n = n + 1;

System.out.println(n);

double d = Double.MAX_VALUE;

d = d + 1;

System.out.println(d);

d = d * 1.000001;

System.out.println(d);

What happens if you go beyond?

int n = Integer.MAX_VALUE;

n = n + 1;

n is -2147483648

double d = Double.MAX_VALUE;

d = d + 1;

no change. +1 insignificant (too small)

d = d * 1.000001;

d is Infinity

C# numerics are different

 "int", "float", "double" are struct types.

// This is C#

int n = int.MaxValue;

String s = "Biggest int is "

 + n.ToString() ;

// range checking is enforced

n = n + 1;

System.OverflowException: Arithmetic operation resulted in an overflow.

Review

1) Is this correct? Give a reason why or why not.

int n = 1234;

System.out.println(n.toString());

2) How can you convert a String value to a double?

String s = "9.8E+6";

double value = ?

Review

Taksin deposited 1,000,000,000 Baht at the bank on 3
occasions. The first 2 times the balance was correct.
But the third time the balance was negative. Why?

Here is the code (you can run this in BlueJ codepad):

int balance = 0; // initial balance

int deposit = 1000000000; // a small deposit

for(int count=0; count < 3; count++) {

 balance = balance + amount;

 System.out.println("Balance is "+balance);

}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

