

Java Basics

A summary of basic Java syntax for people who already
know some programming.

Where's the Source Code?

In Java, all source code is contained in classes.

A class defines a kind of object.

and the object's attributes and behavior.

You create objects (instances) from a class.

Defining your own class

To define a new kind of object, you create a Java class.

Example:
in the coin purse project, we want to have "coins" that
remember their value, so we define a Coin class.

Static Methods:

You may also define a class just to perform some task.

"static" methods can be invoked directly on the class, without
creating an object.

Example: Math.sqrt(2) // invoke sqrt method

MyClass.main({ }) // invoke main method of MyClass

Class Structure

package coinpurse;

/**

 * Describe this class.

 * @author Your Name

 */

public class Coin {

}

static attributes

instance attributes

constructors

methods

Attributes

attributes of a Coin:

a Coin has a value and
currency.

Attributes are what an object knows.

To refer to something, it must be a variable.

package coinpurse;

public class Coin {

 private double value;

 private String currency;

}

Declaring Attributes

public class Coin {

/** value of coin */

private double value;

Visibility

public

protected

[none =
package]

private

Data Type

primitive type

class name

interface

array

Variable Name

name of attribute

should start with
lowercase

Javadoc for attribute

Common Java Data Types

Some data types used in Java are:

Data Type Examples

int
-100 ... -1 0 1 2 ... 2147483647

double
0.5 -3.70 2.98E+8

boolean
true false

String
"Hello" "I'm hungry" "turn left"

List
ArrayList

Collection of things.

List list = new ArrayList();

list.add("apple"); list.add("orange");

Initialize All Your Attributes!

public class Coin {
private double value; // = 0.0
private String currency = "THB";

/** initialize a new coin */
public Coin(double value) {
this.value = value ;

}

Two ways to initialize attributes:

• assign a value as part of declaration, or

• initialize in a constructor

Creating Objects

Use "new" to create an instance (object) of a class.

new Date()

To refer to the object again later, you usually want to assign
a reference to it:

Date d = new Date();

What does "new Date()" mean? How about this:

Date d = new Date(112, 2, 20);

Answer: it depends on the source code.

Constructor Initializes a New Object

public class Coin {

/** initialize a new coin */

public Coin(double value) {

this.value = value ;

}

Coin ten = new Coin(10);

Constructor has the same name as the class.

Constructor does not have any return value. Not even
"void".

"this" means "this object". "this" is used to distinguish
between the parameter value and attribute value.

How Objects are Created

new Coin(10) Java creates object in memory

// constructor's job is to

// initialize a new object

public Coin(double val) {

this.value = val;

}

JVM invokes a constructor to
initialize state of the object

Correct this Code

public class Coin {

 private double value;

 public void Coin(double val) {

 this.value = val;

 }

This code has legal syntax,
but it is not a constructor.

More than One Constructor

public class Coin {
/** default constructor */
public Coin() {
this.value = 0;
this.currency = "THB";

}
public Coin(double value) {
this.value = value;
this.currency = "THB";

}
public Coin(double value,

String currency) {
...

A class can have
many constructors,

if they have different
parameters.

Default Constructor

public class Coin {

private double value;

 private String currency;

public Coin() {

 this.value = 0 ;

 this.currency = "THB";
}

Coin zero = new Coin();

A constructor with no parameters is called the default
constructor.

Avoid Duplicate Code

public class Coin {
/** default constructor */
public Coin() {
this.value = 0;
this.currency = "THB";

}
public Coin(double value) {
this.value = value;
this.currency = "THB";

}
public Coin(double value,String currency){
this.value = value;
this.currency = currency;

These 3 constructors
all do the same thing.

Constructor calls Constructor

 public Coin() {
this(0, "THB");

}
public Coin(double value) {

this(value, "THB");
}
public Coin(double value, String curr) {
 if (value < 0)

 throw new IllegalArgumentException(...);
 this.value = value;
 this.currency = curr;
}

A constructor can call another constructor using "this()",
but it must be the first statement in constructor.

Methods

 The behavior of objects is defined in methods.

 Methods contain the program's logic.

public String toString() {

 return String.format("%d %s coin",

 this.value, this.currency);

 //ex: 5 Baht coin
}

name of method

instructions for this
method

Method in Java

public void act() {

.

.

.

.

}

name of the method
return value (nothing)

instructions

of the method ("body")

end of this method

start of this method

The Body of a Method

public void act() {

move();

turn(30);

move();

}

list of
instructions

";" ends each instruction

The body of a method is a list of instructions.

Instructions are executed from top to bottom.

You can use a { block } anywhere

if (balance > 0) {

}

else {

}

You can use { } for "else" or "while" or ...

else block

block of statements for
"then" case

block of statements for
"else" case

Writing a Method that Returns Result

public class Coin {

private int value;

/** compare 2 coins by value */

public int compareTo(Coin other) {

int diff = this.value - other.value;

return diff;

}

}

this method returns an "int" value

Method with a Parameter

We use parameters to give information to a method.

turn left

turn 15 degrees

can see a Worm ?

move to x , y

Behavior in English
with parameter

Method in Java
with parameter

turn(-90)

turn(15)

canSee(Worm.class)

setLocation(x, y)

Writing a Method with Parameter

the parameter name

/* add the value of two coins */

int add(Coin coin1, Coin coin2) {

 int sum = coin1.value + coin2.value;

 return sum;

}

specify the data type
of the parameter value

Attributes for Knowing Things

An object has to remember information.

A class defines the attributes of a kind of
object.

See attributes of an Object

In BlueJ, you can "inspect" attributes of an object.

1. Create an object, e.g. java.awt.Point

2. Right click and choose "Inspect".

3. What are the attributes?

The attributes of
an object are also
called "fields" or
"properties".

Attributes are what an object knows

Coin
value: int

currency: String

getValue()

compareTo(other)

add(coin1, coin2)

toString()

Attributes -

what a Coin knows

Methods -

what a Coin can do

Defining an Attribute

Attributes should be defined near start of class.

Attribute has a visibility, data type, and name.

You can optionally initialize its value.

class Coin {

 private int value = 0;

private:

Only this
class can see
value.

The type of data
we want to store.

The name of
this attribute

Memory

0

Assigning and Changing a Value

We can change the value of a variable as often as we
like. To assign a value use:

count = 0;

count = count + 1;

variableName = some expression;

expressionassign to

Memory

1

variable =

0

Values and References

 An attribute (variable) of a primitive type like "int"
contains a value of the primitive.

 An attribute (variable) of an object type like Coin is a
reference.

Variables are References

A variable can be used to refer to another object.

 A reference (variable) is how we call methods of another
object.

Example:

Date today = new Date();

// today is not a Date, its a reference to a Date object

int day = today.getDate(); // get day of month

// call toString method of the date

String s = today.toString();

Variables as References (2)

A variable is a reference to another object.

Example:

A Purse contains a reference to a List of coins.

The List contains references to Coin objects.

A Purse has a capacity which is just a value (int).

Purse

capacity: int

coins: List

 ...

ArrayList<Coin>

size: int

coins: array

 ...

coin[0]

coin[1]

coin[2]

Variables as References (3)

void describe(Purse purse) {

int balance = purse.getBalance();

if (purse.isFull()) ...

Use a reference to ask as object some questions, using
the object's methods.

The variable purse is a reference to a Purse object.
Use the reference to ask the purse something (invoke
its methods). purse.getBalance() asks the purse
for its balance (amount of money).

Local Variables

Variables defined inside a method are local variables.

(1) can only be used inside the method

(2) deleted when the method returns

public class Purse {

 public int getBalance() {

 int balance = 0;

 for(int k=0; k<coins.size(); k++) {

 // add coins.get(k) to balance

 }

Local
variables are
defined inside
a method.

3 Types of Variables

An object has access to 3 kinds of variables:

Attributes of the object

Static attributes of the class

Local variables and parameters (inside one method)

Local Variables vs. Attributes

An attribute is something an object remembers for its whole life.

A local variable is for temporary data. The value is lost when
execution leaves the method.

public class Purse {

 private int capacity;

 private List coins;

 public int getBalance() {

 int balance = ...;

 return balance;

 }

A purse must
remember its capacity
and coins

balance can be computed
each time we ask for it.
Don't need to remember.

Static Method as Service

Some classes provide a "service".

A service is something that the class does, but is not
associated with any object.

Services are defined by static methods.

Get the current system time in milliseconds:

System.getTimeMillis();

Name of Class static method name

Service: method without an object

Some other service (static) methods:

Square root:

double r = Math.sqrt(2);

Convert a String to an integer:

int value = Integer.parseInt("123");

Show message in a dialog box:

JOptionPane.showMessageDialog(null,"Hello?");

These methods are performed by a class, not an object:

Service methods are static

A method that doesn't belong to an object is called static.

Math.sqrt() - static method in the Math class

Integer.parseInt() static method in Integer

To create a static method, add the word "static":

/** distance between points (x1,y1) and (x2,y2) */

public static double distance(x1, y1, x2, y2) {

// hypot computes hypothenous of a triangle

double d = Math.hypot(x1 - x2, y1 - y2);

return d;

}

Java Naming Convention

class name begins with Uppercase: Coffee, String

method name uses camelCase: getMoreCoffee()

variable name also uses camelCase: myCoffee

constants use UPPER_CASE and _: MAX_COFFEE

package names are all lowercase (but not always):

java.util java.io

org.apache.commons.logging

primitive type names are all lowercase:

boolean, int, double

What are these?

Is it a ...

package

class

primitive type

attribute ("field")

method

 (static or instance)

constant

(static final attribute)

interface (more advanced)

???

Date

System

System.nanoTime()

System.out

System.out.println()

double

Double

"Hello nerd".length()

java.lang.Double.MAX_VALUE

Comparable

java.util

java.util.ArrayList

java.util.List

Packages

 Java uses packages to organize classes.

 Packages reduce size of name space and avoid name
conflicts (two classes with same name)

Example: there are 2 Date classes.

java.util.Date "Date" class in java.util

java.sql.Date "Date" class in java.sql

To use the Date from java.utll package, write:

import java.util.Date;

Core Packages

java.lang Java language core classes.

Object, String, System,
Integer, Double, Math, Thread

java compiler always imports this package,
so you don't need to.

java.io

(and

java.nio)

Classes for input and output

InputStream, BufferedReader,
File, OutputStream

java.util Date/time classes, collections, & utilities

Calendar, Date,
List, ArrayList, Set,
Arrays, Formatter, Scanner

Importing classes

Write "import" statements at top of file, after the
"package" statement (if you have one).

package coinpurse;

import java.util.Scanner;

import java.util.Date;

/**

 * User interface for coin purse.

 */

public class ConsoleDialog {

Scanner console = new Scanner(System.in);

...

imports come after package
statement and before class

Javadoc comment.

Importing all classes

Write "import" statements at top of file, after the
"package" statement (if you have one).

package coinpurse;

import java.util.*;

/**

 * User interface for coin purse.

 */

public class ConsoleDialog {

Scanner console = new Scanner(System.in);

...

imports come after package
statement and before class

Javadoc comment.

What is "import"?

import tells the compiler where to find classes.

It doesn't actually "import" any code!

package guessinggame;

import java.util.Random;

/**

 * User interface for guessing game.

 */

public class GameDialog {

private Random rand = new Random();

...

tell the compiler where to
find the Random class

Why import?

The reason for "import" to to resolve ambiguity.

Many classes can have the same name.

Java API has 2 classes named "Date".

 java.util.Date and java.sql.Date.

3 classes named "Timer"

5 "Element" classes and interfaces.

import java.util.Date;

class Appointment {

private Date startDate;

Import Everything

You can import everything from a package. Use *

package lazyimport;

import java.util.*; // for Scanner, Date, List,...

import java.io.InputStream;

class Person {

private static Scanner console = ...;

private Date birthday;

private List<Person> friends;

...

Ambiguity in Import

If a class matches more than one wildcard "*", Java
requires you to resolve the ambiguity using an import
without the wildcard.

Example: There are 2 Date classes: java.util.Date
and java.sql.Date. These imports are ambiguous:

import java.util.*;

import java.sql.*;

/** a class using a Date */

class Ambiguous {

private Date today;
which Date class
should Java use?

Resolving Ambiguity

There are two ways to resolve ambiguity.

1. import a specific class (no wildcard)

2. use the fully qualified name in Java code

import java.util.*;

import java.sql.*;

import java.util.Date; // Solution #1

class Ambiguous {

private Date today = new Date();

 // Solution #2

private java.sql.Date mdate

= new java.sql.Date();

Array versus ArrayList (a List)

Array

// array of coins

Coin[] coins;

coins = new Coin[10];

coins[0] = new Coin(5);

coins[1] = new Coin(20);

System.out.println(coins[4]); // print null

ArrayList is a kind of List

// array of coins

Coin[] coins;

coins = new Coin[10];

coins[0] = new Coin(5);

coins[1] = new Coin(20);

System.out.println(coins[4]); // print null

A List can hold any amount of data.

ArrayList is a kind of list.

List and ArrayList are in java.util.

Console Input and Output

Display output

System.out.println("I'm a string" + " again");

System.out.print("apple");

System.out.print("banana\n");

System.out.print("grape");

I'm a string again

applebanana

grape

Notice there is no space between "apple" and "banana".
 print() does not add space.

Input

int c = System.in.read(); // read 1 byte

byte[] b = new byte[1024];

System.in.read(b); // read array of byte

Scanner console = new Scanner(System.in);

String word = console.next();

String line = console.nextLine();

int number = console.nextInt();

double x = console.nextDouble();

Use a Scanner to read input as int, double, String, etc.

System.in can only read bytes. Not very useful.

Packaging and Commenting Code

package coinpurse;

/**

 * Coin represents money with an integer value.

 * @author Bill Gates

 */

public class Coin {

private int value;

 /**

 * Initialize a new coin object.

 * @param value is the value of the coin

 */

public Coin(int value) {

this.value = value;

}

Complex logic: and or not

int x = getX();

int y = getY();

// if x 0 or y 0 then turn right

if (x <= 0 || y <= 0)

turn(+15);

// if we are hungry and see a worm...

if (hungry() && canSee(Worm.class))

eat(Worm.class);

The test expression of "if" may contain && (and), ||
(or), and ! (not), as long as the result is true or false.

Summary (1)

 A compiler translates Java source code into a form that
can be run.

 An object-oriented program consists of classes.

 Classes can contain:

attributes of objects -- things an object knows

methods -- behavior of objects

constructor -- initializes data of a new object

static methods -- services provided by the class

static variables -- things known by the class

Summary (2)

 A class defines a kind of object, like Actor or Crab.

 The methods of a class contain the logic for how an
object behaves (written in Java).

 A method can call other methods in the same object,
e.g. act() calls move().

 A method can call methods of other objects, e.g.
atWorldEdge() calls world.getWidth().

Question: why { ... } ?

public void sayHello(String who) {

System.out.println("Hello "+who);

}

Why?

Why do we have to write { and } around the
method instructions?

Why?

How to convert number to String?

How to convert a number n to a String?

int n = 100;

String s = n; // error: must convert to string

// At least 4 possible solutions:

String s1 =

String s2 =

String s3 =

String s4 =

How to convert a number to String?

How to convert a number n to a String?

int n = 100;

String s = n; // ERROR: must convert to string

// At least 4 solutions:

String s1 = Integer.toString(n);

String s2 = "" + n;

String s3 = String.valueOf(n);

String s4 = String.format("%d", n);

Summary about Methods

If you already understand how to use methods and
parameters, you can skip this part.

Anatomy of a method (1)

public void sayHello() {

String who = "Cat";

System.out.println("Hello "+who);

}

Who can use this method?

public = any one

protected = me and my chidren (subclasses)

private = only my class

Anatomy of a method (2)

public void sayHello() {

String who = "Cat";

System.out.println("Hello "+who);

}

What answer (value) is returned?

void = nothing returned

int = returns an integer (0, 1, 2, ...)

etc. a method can return anything

Anatomy of a method (3)

public void sayHello() {

String who = "Cat";

System.out.println("Hello "+who);

}

Name of this method

Anatomy of a method (4)

public void sayHello() {

String who = "Cat";

System.out.println("Hello "+who);

}

Parameters for sending
info to this method
(none here).

Anatomy of a method (5)

public void sayHello(String who) {

System.out.println("Hello "+who);

}

Parameter
who to greet?

Method wants a String.

sayHello("Cat");
sayHello("Bird");
sayHello(2.5); ERROR

Anatomy of a method (6)

public boolean canSee(Class food) {

 Object obj =

 getOneIntersectingObject(food);

 if (obj != null) return true;

 else return false;

}

Return a boolean (true or false)

Call another
method, from
the Actor
class.

Parameter (info):
what kind of food
to look for?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

